
Chapter 4

Swift-Hohenberg model for tilted

magnetic fields

4.1 Introduction

The weakly nonlinear models discussed in the previous chapter used ideas from equiv-

ariant bifurcation theory to determine the patterns that might be observed in various

circumstances. The main assumption made was that the patterns were to be doubly

periodic with respect to some lattice (either rhombic or hexagonal), which led to a small

number of ODEs describing the dynamics. We now wish to extend the model to allow

φ (the angle of tilt of the magnetic field) to vary with position, as a simple way of mod-

elling solar pores and sunspots, where the magnetic field fans out and becomes more

inclined as one moves radially outwards.

Our approach will be to start from the Swift-Hohenberg equation (Swift and Ho-

henberg, 1977), a commonly used model equation for convection problems, in which the

full three-dimensional governing equations are reduced to a single PDE in two spatial

dimensions. This is a useful model since it exhibits many of the properties of convection,

at least in the weakly nonlinear regime, but it is much simpler to work with than the

full equations. We will add some extra terms to the usual Swift-Hohenberg equation, in

order to represent the effects of the tilted magnetic field. These terms will be discussed

in section 4.2.

Before studying this modified Swift-Hohenberg equation in its own right, we will first

use it to derive a set of three Landau-Ginzburg equations. This represents a further

simplification, since it converts the problem from a PDE in two spatial dimensions to a

115



system in one spatial dimension. This makes it easier to understand what is happening,

albeit with some loss of generality. These equations will be derived in section 4.3.

We then move on, in section 4.4, to look at the properties of the modified Swift-

Hohenberg equation itself. Using the Swift-Hohenberg equation allows us to look at

more general situations, and one of the things we will do is to adapt the equation to a

circular (rather than Cartesian) geometry, in order to represent a sunspot slightly more

realistically. Finally, we present our conclusions in section 4.5.

4.2 The model

We consider the following modification of the Swift-Hohenberg equation:

∂ψ

∂t
= rψ − (1 + ∇2)2ψ + αψ2 − γψ3 + aφ2ψ + bφ2∂

2ψ

∂x2
+ cφ

∂ψ

∂x
, (4.1)

where ψ = ψ(x, y, t) and φ = φ(x) are real functions, and r, a, b, c, α and γ are real

constants. When φ = 0 we recover the original Swift-Hohenberg equation (with added

quadratic term). The last three terms on the right-hand side are new and represent the

effects of the tilted field (under the assumption that φ is small).

The effects of these new terms are best seen by looking at the linearized version

of (4.1). If φ is constant we can look at the linear theory very easily, substituting

ψ = exp(ik · x + σt) (with k = (kx, ky)). The following equation for σ is obtained:

σ = (r + aφ2) − (1 − |k|2) − bk2
xφ

2 + ikxcφ. (4.2)

We can now see that the term proportional to a simply causes the growth rate to

increase in proportion to φ2. This represents the fact that as the field tilt increases (at

fixed total field strength), the critical Rayleigh number falls, and the convection becomes

more vigorous (at fixed Rayleigh number).

The term proportional to b introduces a (linear) anisotropy, so that the linear growth

rate of a mode depends on its orientation. Modes with kx 6= 0 are penalized, so that the

most unstable mode has k = (0, 1), corresponding to rolls aligned with the tilt direction

of the magnetic field.

The term proportional to c models the fact that patterns travel when φ is non-zero.

If φ was uniform, this term could be removed by transforming to an appropriate moving

frame, but when φ depends on position, it must be retained.
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Note that symmetry considerations imply that the travelling term is an odd function

of φ, and therefore proportional to φ (for small φ), while the other two new terms are

even in φ, and therefore proportional to φ2 at leading order.

Modifications of the Swift-Hohenberg equation, including anisotropy, have been stud-

ied before. These can be divided into two classes: those in which the quadratic term

(representing broken up-down symmetry) is included, and those in which it is not. An

example of the latter is the work of Pesch and Kramer (1986), who applied a modi-

fied Swift-Hohenberg equation to anisotropic liquid crystal systems. Another example

is in the field of rotating convection, where Roxin and Riecke (2002, 2004) apply an

anisotropic Swift-Hohenberg model. A more detailed model of anisotropic rotating con-

vection (with mean flows included) is given by Pollicott et al. (2003).

Examples of models including both anisotropy effects and the quadratic term are

given by Walgraef and Schiller (1987) and Schmitz and Zimmermann (1997). Here, a

transition from hexagons to rolls is found as the anisotropy increases (as in our model).

However, the ‘travelling’ term (proportional to c) has not been included in any previous

studies, and this term creates interesting new effects, as we shall see below.

4.3 Landau-Ginzburg equations

From the above model it is possible to derive a set of amplitude equations of Landau-

Ginzburg type. We introduce a small parameter ǫ and make the following transforma-

tions:

r = ǫ2r2 (4.3)

c = ǫc1 (4.4)

φ = ǫφ1 (4.5)

α = ǫα1, (4.6)

where r2, c1 and α1 are constants (having no ǫ-dependence). We assume that the other

constants (b and γ) do not depend on ǫ. We also assume that φ1 is a slowly varying

function of x, varying on an O(1/ǫ) length scale, i.e. φ1(x) = f(ǫx) where the definition

of f does not itself depend on ǫ.

The scalings for r, φ and α represent small-amplitude convection, a small tilt angle,

and a small up-down asymmetry, and all of these agree with the scalings made in the

previous chapter (section 3.3). We choose c = O(ǫ) out of necessity; the calculation we
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are about to perform would fail if c was taken to be of order 1. However, we can justify

the choice of small c in terms of our linear model (Chapter 2). There, we adopted the

Boussinesq approximation, with a depth-dependent κ being used to break the up-down

symmetry. It turned out that the speed of travel of our solutions was proportional to

the amount of up-down asymmetry (i.e. the relative size of dκ/dz). But here, we must

assume small up-down asymmetry (equation 4.6), so it is consistent to take a slow speed

of travel as well (equation 4.4).

Note also that by rescaling ψ and redefining ǫ, we can without loss of generality

rescale α1 and γ arbitrarily. We do so, setting α1 = 1/2, γ = 1/3 (this will simplify the

equations later on).

Equation (4.1) becomes

∂ψ

∂t
= ǫ2(r2 + aφ2

1)ψ − (1 + ∇2)2ψ +
1

2
ǫψ2 − 1

3
ψ3 + ǫ2c1φ1

∂ψ

∂x
+ bǫ2φ2

1

∂2ψ

∂x2
. (4.7)

We can make the separation of length and time scales explicit by introducing ‘fast’

variables x′ = x, y′ = y, t′ = t and ‘slow’ variables X = ǫx/
√

3, Y = ǫy/
√

3, T = ǫ2t

(the factors of
√

3 are for later convenience). We now imagine ψ as being a function of

both the fast and slow variables, writing ψ = ψ(x′, y′, t′, X, Y, T ) instead of the previous

ψ = ψ(x, y, t). Using the chain rule, we find the following relationships between the old

and new variables:

∂ψ

∂t
=

∂ψ

∂t′
+ ǫ2

∂ψ

∂T
(4.8)

∂ψ

∂x
=

∂ψ

∂x′
+O(ǫ) (4.9)

∂2ψ

∂x2
=

∂2ψ

∂x′2
+O(ǫ) (4.10)

−(1 + ∇2)2ψ = L0ψ + ǫL1ψ + ǫ2L2ψ + O(ǫ3) (4.11)

where

L0 = −(1 + ∇′2)2 (4.12)

L1 = − 4√
3

(

1 + ∇′2
)

(

∂2

∂x′∂X
+

∂2

∂y′∂Y

)

(4.13)

L2 = −2

3

(

1 + ∇′2
)

(

∂2

∂X2
+

∂2

∂Y 2

)

− 4

3

(

∂2

∂x′∂X
+

∂2

∂y∂Y

)2

(4.14)

and ∇′2 = ∂2/∂x′2 + ∂2/∂y′2.

Note that because we assumed that φ varies on an O(1/ǫ) length scale, φ1 can be

treated as a function of X alone (and not x′).
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The next step is to expand ψ as

ψ = ǫψ1 + ǫ2ψ2 + ǫ3ψ3 + · · · (4.15)

and substitute into (4.7). Equating coefficients at O(ǫ) gives

∂ψ1

∂t′
= L0ψ1. (4.16)

We look for solutions in which ∂ψ/∂t′ = 0, so (4.16) simply becomes L0ψ1 = 0, which

has solutions

ψ1 = z(X, Y, T ) exp(ikxx
′ + ikyy

′) + c.c. (4.17)

for any kx and ky satisfying k2
x + k2

y = 1, and for an arbitrary function z(X, Y, T ). At

this stage we are free to take any linear combination of these solutions. We choose to

take three modes on a hexagonal lattice, giving us the following solution for ψ1:

ψ1 =
3

∑

j=1

zj(X, Y, T ) exp(ikj · x′) + c.c. (4.18)

with

k1 = (0,−1), k2,3 = (∓
√

3/2, 1/2). (4.19)

(Cf. Figure 3.4 on page 72; our choice here corresponds to θ = 30◦.)

At O(ǫ2) we have

0 = L0ψ2 + L1ψ1. (4.20)

It happens that ψ1, as given by (4.18), satisfies L1ψ1 = 0, hence (4.20) ⇒ L0ψ2 = 0.

The solutions for ψ2 are proportional to exp ik · x′, with |k| = 1, and also satisfy

L1ψ2 = 0. (4.21)

At O(ǫ3) we obtain (after some rearrangement)

−L0ψ3 = −∂ψ1

∂T
+ (r2 + aφ2

1)ψ1 + L2ψ1 + c1φ1

∂ψ1

∂x′
+ bφ2

1

∂2ψ1

∂x′2
+

1

2
ψ2

1 −
1

3
ψ3

1 . (4.22)

Here we have used (4.21).

The operator L0 is self-adjoint, so 〈L0y1, y2〉 = 〈y1, L0y2〉 for any two functions y1

and y2.
1 In particular, 〈L0ψ3, ψ1〉 = 〈ψ3, L0ψ1〉; and since L0ψ1 = 0, this implies that

1Here 〈f, g〉 is an inner product between functions f and g, defined by 〈f, g〉 =
∫

f̄(x)g(x)dx. The

integral is taken over a suitable interval in x (e.g. if the functions had periodic boundary conditions,

then the integral would be over one period).
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〈L0ψ3, ψ1〉 = 0. The net result of this is that L0ψ3 cannot contain any terms proportional

to exp(±ikj · x′).

We will now, therefore, pick out terms on the right-hand side of (4.22) that are

proportional to exp(±ik1 · x′). (The corresponding terms with k2 or k3 in place of k1

can be obtained by cyclic permutation of indices.) We first of all note that

ψ2
1 = 2z̄2z̄3 exp(ik1 · x′) + c.c. + other terms (4.23)

ψ3
1 = z1(3|z1|2 + 6|z2|2 + 6|z3|2) exp(ik1 · x′) + c.c. + other terms (4.24)

where ‘other terms’ denotes terms that are not proportional to exp(±ik1 ·x′). We then

obtain

−L0ψ3 =

[

− ∂z1
∂T

+ (r2 + aφ2
1)z1 +

4

3

(

kx1

∂

∂X
+ ky1

∂

∂Y

)2

z1 + c1φ1ikx1z1 − bφ2
1k

2
x1z1

+ z̄2z̄3 − z1(|z1|2 + 3|z2|2 + 3|z3|2)
]

exp(ik1 · x′) + other terms (4.25)

where again the ‘other terms’ are not proportional to exp(±ik1 · x′). Since L0ψ3 can-

not contain any terms proportional to exp(±ik1 · x′), the entire right-hand side of the

equation (excluding the ‘other terms’) can be set to zero as a solvability condition. Do-

ing this for the other two equations (obtained by cyclic permutation) as well, and also

substituting the values of kxj and kyj , yields the following equations:

∂z1
∂T

= (r2 + aφ2
1)z1 +

4

3

∂2z1
∂Y 2

+ z̄2z̄3 − z1(|z1|2 + 2|z2|2 + 2|z3|2) (4.26)

∂z2
∂T

= (r2 + (a− b̃)φ2
1)z2 − c̃φ1iz2 +

(

− ∂

∂X
+

1√
3

∂

∂Y

)2

z2

+ z̄3z̄1 − z2(|z2|2 + 2|z3|2 + 2|z1|2) (4.27)

∂z3
∂T

= (r2 + (a− b̃)φ2
1)z3 + c̃φ1iz3 +

(

∂

∂X
+

1√
3

∂

∂Y

)2

z3

+ z̄1z̄2 − z3(|z3|2 + 2|z1|2 + 2|z2|2) (4.28)

where b̃ = 3b/4 and c̃ =
√

3c1/2 (these rescalings eliminate a couple of numeric constants

that would otherwise appear in the equations). Equations (4.26)–(4.28) are the three

amplitude equations (Landau-Ginzburg equations) for our model.

As a simplification, we will neglect all Y -dependence in the following sections, so

that ∂/∂Y can be set to zero. (This is reasonable because we do not expect to see any

significant variation along the Y direction, since the coefficients of the equations are

constant along the Y direction, and vary only in the X direction.)
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4.3.1 Setting up the problem

In order to specify the problem fully, we have to choose a function φ1(X), as well as

giving values for r2, a, b̃ and c̃. Initially, we will set the constants r2 and c̃ to zero, and

look at the effects of non-zero values later on.

This leaves a and b̃, which affect how the growth rates for the three modes change

with φ. For these we can refer back to the results of our steady hexagonal model,

described in section 3.3. Recall that there was a pitchfork bifurcation at φ = φpf at

which rolls became stable, and also a saddle-node bifurcation at φ = φsn at which the

hexagons became unstable. In this chapter, we will scale our parameters such that

φpf = 1. (This can always be done by multiplying both a and b̃ by φ2
pf if the latter is

not equal to 1.) This effectively leaves one free parameter, which we may take to be

a/(a − b̃); this is equivalent to the parameter A1 from section 3.3.1. (This parameter

measures the amount of anisotropy in the system; A1 = 1 gives an isotropic system

while A1 ≫ 1 implies a highly anisotropic problem.)

Recall also that the pitchfork bifurcation at φpf could be either supercritical or

subcritical, depending on A1. We will investigate two values of A1, one for each of these

possibilities. Case I will have

A1 = 1.11, a = 0.826, b̃ = 0.082, (4.29)

which produces a subcritical bifurcation (with φpf = 1 and φsn = 1.4). Case II will be

supercritical, with

A1 = 2.5, a = 0.391, b̃ = 0.234. (4.30)

The choice of φ1(X) defines how much the tilt varies by, and over what length scale

it varies. For computational convenience we will take φ1 to be a periodic function, with

period X0, defined as follows:

φ1 = 0.75(1 − cos(2πX/X0)). (4.31)

This function varies sinusoidally from 0 at the edges of the domain to 1.5 in the centre.

We can now impose periodic boundary conditions when solving (4.26)–(4.28), with the

solution domain being X ∈ [0, X0], or equivalently x ∈ [0, L], where L = X0

√
3/ǫ.

With periodic boundary conditions we can easily compute solutions to (4.26)–(4.28)

using a Fourier spectral method for the horizontal differences. We couple this with

an ETD (exponential time differencing) method for the time discretization (Cox and
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Matthews, 2002). Given values for r2, a, b̃ and c̃, and φ0, φ1 and X0, we can then solve

the equations numerically to find z1–z3 as functions of X and T .

Then, once we have the three amplitudes z1–z3, and a value for L, we can reconstruct

ψ (to lowest order) from equation (4.18). In the following, we fix L to be a constant,

choosing a value that gives a reasonably large number of convection cells across the

width of the domain. We allow X0 to vary; note that this is equivalent to varying ǫ,

since ǫ = X0

√
3/L.

There is one other requirement before numerical calculations can be performed, which

comes about because there is no diffusion term in (4.26) (after setting ∂/∂Y = 0). This

causes problems numerically, and we resolve this by adding a small ‘regularizing’ term,

−η∂4z1/∂X
4, to the right-hand side of (4.26), where η is chosen to be a very small value

(i.e. small enough that varying η has no qualitative effect on the results). This prevents

numerical difficulties and is physically reasonable, since one of the higher order terms

would be a fourth-order diffusion term anyway.

4.3.2 Theoretical ideas

In the case c̃ = 0 (in which the ‘travelling’ term is switched off), we can make some

progress theoretically.

If we momentarily neglect the diffusion terms in equations (4.26)–(4.28), then there

are no X-derivatives in the equations, and we are effectively left with a set of ODEs

for each point along the X axis. These ODEs are nothing other than the ‘steady

hexagonal’ model from the previous chapter (section 3.3). Since we know φ(X), we can

use the results of that chapter (e.g. the bifurcation diagram Figure 3.8) to plot the stable

solution(s) as a function of X. This has been done in Figure 4.1.

These graphs give us an idea of what the solution to the PDEs (4.26)–(4.28) will be.

In the supercritical case we would expect the solution to closely follow the graphs shown

in the middle row of Figure 4.1, although perhaps modified slightly by the diffusion

terms in (4.26)–(4.28), which we have so far neglected. However, in the subcritical case,

pictured in the top row of the figure, there are two different solution branches, and the

solution to the PDEs cannot follow both of these simultaneously. There would have to

be a discontinuous change (or front) between the two patterns at at least one point.

Near such a front, the diffusion terms will clearly play an important role. In fact,

they have two effects: firstly, they smooth out the front, so that instead of a sharp
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Figure 4.1: Graphs showing the stable roll (dashed line) and hexagon (dash-

dotted line) branches, as well as the trivial solution (dotted line), as indicated

by the analysis of section 4.3.2. The left-hand column shows |z1| against X,

and the right-hand column shows |z2| = |z3| against X. These amplitudes are

only plotted at points where the respective solutions are stable. The top row

is the subcritical case (see equation 4.29), the middle row is the supercritical

case (equation 4.30), and the bottom row shows the subcritical case with r2

changed to −0.2.
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discontinuity there is a continuous change over some diffusive length scale; secondly, as

we will see shortly, they can actually cause the front to travel, either to the left or to

the right.

We can investigate this phenomenon by considering what happens when φ is uniform.

Although this is not the case in our model, it should nevertheless give an idea of what

happens if φ is varying only slowly with X.

We first of all write the equations in the following form:

ż1 =
∂U

∂z1
(4.32)

ż2 =
∂U

∂z2
+
∂2z2
∂X2

(4.33)

ż3 =
∂U

∂z3
+
∂2z3
∂X2

(4.34)

where

U =
µ1

2
z2
1 +

µ23

2
(z2

2 + z2
3) −

1

4
(z4

1 + z4
2 + z4

3) − (z2
1z

2
2 + z2

2z
2
3 + z2

3z
2
1) + z1z2z3 (4.35)

(here we have neglected the fourth order diffusion term in the ż1 equation, since it is

very small). U can be thought of as a ‘potential’.

We look for solutions of the form zj(x, t) = zj(ξ), where ξ = x − vt, and v is a

constant. These are uniformly translating solutions (i.e., they are time-independent

when viewed in a frame moving with constant velocity v). The equations become:

−vdz1
dξ

=
∂U

∂z1
(4.36)

−vdz2
dξ

=
∂U

∂z2
+

d2z2
dξ2

(4.37)

−vdz3
dξ

=
∂U

∂z3
+

d2z3
dξ2

. (4.38)

Multiplying each equation by dzj/dξ, and summing, we obtain:

d

dξ

[

U +
1

2

(

dz2
dξ

)2

+
1

2

(

dz3
dξ

)2
]

= −v
[

(

dz1
dξ

)2

+

(

dz2
dξ

)2

+

(

dz3
dξ

)2
]

. (4.39)

If we define

E = U +
1

2

(

dz2
dξ

)2

+
1

2

(

dz3
dξ

)2

, (4.40)

then we can see that E is either an increasing function of ξ (if v < 0), a decreasing

function (if v > 0), or constant (if v = 0).
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Now consider a solution containing a front between hexagons and rolls. In particular,

suppose that there are hexagons for large negative ξ, and rolls for large positive ξ, with

a transition region near ξ = 0. In regions far from the origin, z1, z2 and z3 are constant,

and so E = U there. So we have E → Uhex for ξ ≪ 0 and E → Urolls for ξ ≫ 0 (where

Uhex and Urolls are the potentials for the hexagon and roll solutions respectively).

Therefore, we see that if Uhex > Urolls, then v will be positive, and the front will move

to the right (so that the hexagons invade the rolls). If Uhex < Urolls then the opposite

happens and the rolls invade the hexagons. The solution with the higher value of U

‘wins’. If Uhex = Urolls, then a stationary front between the two solutions is possible.

We now consider what happens if φ is changing with position. This technically

makes the above analysis invalid: firstly, the amplitudes in the ‘hexagon’ and ‘roll’

regions are no longer constant, but are varying with φ (and hence X), and secondly, the

potential U now explicitly depends on X, which complicates the calculation somewhat.

Nevertheless, if φ is varying slowly enough, then the above analysis should be at least

approximately valid, and we can use it to get some ideas about what is happening.

We find that Uhex and Urolls now both depend on X (since they are functions of φ), and

therefore v will also depend on X in general. This means that there will be some regions

where the front travels to the left, some where it travels to the right, and (possibly) an

‘equilibrium’ position where the front can be stationary.

Therefore, even though there is an entire band of φ values in which hexagons and

rolls are both (locally) stable, the front between them will be located at a well-defined

position within this band; this will be the point at which the potentials Uhex and Urolls

(as defined above) are equal.

The above applies for r ≥ 0. If r < 0 then there is an additional consideration:

the trivial solution is now stable over part of the domain, where φ is sufficiently small.

(This situation is illustrated in the bottom row of Figure 4.1). Note that the transition

between the trivial solution and hexagons is associated with hysteresis, just as the

transition between hexagons and rolls is. The arguments above can be applied equally

well to a front between hexagons and the trivial solution. The trivial solution has

U = 0, and so we would expect to see a sharp transition between the trivial solution

and hexagons near the point where Uhex = 0.
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Figure 4.2: The amplitudes |z1| (left-hand column) and |z2| = |z3| (right-

hand column) corresponding to two choices for the parameter X0: the top

row shows the case X0 = 50 (corresponding to a relatively high amount of

diffusion), and the bottom row shows the case X0 = 400 (with much lower

diffusion). The solid lines show the actual computed amplitudes. The dashed

and dashed-dotted lines show the predicted stable roll and hexagon branches,

respectively. The vertical dotted lines give the positions where Urolls = Uhex

(see section 4.3.2).

4.3.3 Numerical results

We now discuss the results of our numerical solutions of equations (4.26)–(4.28). We will

first of all look at case I (the ‘subcritical’ case, equation 4.29), and we will set r2 = c̃ = 0

to begin with. For our initial conditions, we set ψ to a small random value at each grid

point. Initially we will take these random values to be real, as this simplifies the results

a little; later we will move on to discuss what happens with complex initial conditions.

We begin by plotting the amplitudes |z1|, |z2| and |z3| that result from such a simu-

lation, as a function of X. This is done in Figure 4.2. We find that |z2| and |z3| end up

being equal to each other, so we have plotted only two sets of graphs, one showing |z1|
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Figure 4.3: The value of Uhex −Urolls as a function of X, for the subcritical

case (equation 4.29) with r2 = 0. This value has been plotted only in regions

where rolls and hexagons are both stable.

(left-hand column of the figure) and one showing |z2| = |z3| (right-hand column).

The ‘ideal’ solution curves for rolls and hexagons, from Figure 4.1, are also shown,

as dashed and dashed-dotted lines respectively. We find that away from the transition

between rolls and hexagons, the numerical solution (solid line) follows these ideal curves

quite closely. The transition itself is smoothed out over a ‘diffusion width’; this is more

pronounced in the top two pictures, where there is more diffusion, than in the bottom

two pictures.

We have also calculated the potentials Uhex and Urolls (as defined in the previous

section) for the parameters used in these runs. In Figure 4.3, we plot Uhex − Urolls (for

those values of X where rolls and hexagons are simultaneously stable). We see that for

φ less than a critical value, Uhex > Urolls, so that the front moves towards higher φ; for φ

greater than this critical value, the opposite is true. The front therefore moves towards

the critical value, which represents its stable equilibrium position. This position has

been plotted on Figure 4.2 as a vertical dotted line; it can be seen that this agrees quite

closely with the actual observed position of the front.

Figure 4.4 shows a representation of ψ itself for three different values of X0. These

have been drawn at fixed L = 40π
√

3 (this value gives room for thirty hexagonal cells

across the width of the box). X0 is increasing from top to bottom; physically, increasing

X0 corresponds to reducing the amount of diffusion in the system. Unsurprisingly, the

transition between rolls and hexagons is sharpest when diffusion is least (largest X0).

In fact, in this subcritical case, the sharpness of the transition is limited only by the

diffusion terms.
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Figure 4.4: The effect of varying X0 (which is proportional to ǫ) in the

subcritical model. The top picture shows X0 = 50, the middle one X0 = 150,

and the bottom one X0 = 400. (These are steady solutions.)

It should also be noted that ǫ = X0

√
3/L, so increasing X0 (at fixed L) also cor-

responds to increasing ǫ (our measure of the amplitude of the convection). The values

of ǫ corresponding to the three panels of Figure 4.4 are 0.40, 1.19 and 3.18. These are

perhaps rather large (given that ǫ is a small parameter), so the model may not strictly

be valid towards the upper end of this range, but what we can conclude is that the tran-

sition becomes sharper for larger values of ǫ (which would correspond to larger Rayleigh

numbers).

We also briefly mention the effect of increasing the parameter r2 (which previously

we have set to zero). Basically, this change moves the transition point between rolls and

hexagons towards smaller values of φ (cf. Figure 3.9 on page 83). This is illustrated in

Figure 4.5 where we have fixed X0 = 150 and varied r2, taking the values 0.5, 1.2 and

1.5. As r2 increases, the region of rolls becomes larger, until eventually rolls are seen in

the entire domain.
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Figure 4.5: Results for (from top to bottom) r2 = 0.5, r2 = 1.2 and

r2 = 1.5. (As before, these are steady solutions.)

Results when c̃ 6= 0

So far we have fixed c̃ = 0; when c̃ 6= 0 (and sufficiently large), patterns start to

travel. We will choose c̃ > 0 (without loss of generality), producing leftward-travelling

patterns. This produces ‘inward’-travelling patterns on the left-hand side of the domain

(corresponding to the situation in a sunspot) and ‘outward’-travelling patterns on the

right-hand side.

We actually find for very small c̃ that steady patterns are possible. Such a solution,

for c̃ = 0.02, is shown in Figure 4.6. For c̃ & 0.025, however, we find that the solutions

become time-dependent, with patterns travelling to the left. Note that this travelling

applies to the hexagons, but not the rolls, since c̃ does not appear in the ż1 equation.

A solution with c̃ = 0.2 is displayed in Figure 4.7; snapshots at six different times

are shown. The solution is similar in appearance to the patterns found above (with

c̃ = 0); the difference is that the hexagons now travel leftwards (although the rolls

remain stationary). Moreover, the speed of this travel depends on φ, and hence also on

X. Near the centre of the domain, the hexagons are travelling quickly, but near the left-

and right-hand edges, they move more slowly. This causes the pattern to be compressed

in the left-hand half of the domain, or stretched in the right-hand half, in a kind of
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Figure 4.6: A steady solution for c̃ = 0.02. Plots of |z1| and |z2| = |z3|
against X are also shown.

‘concertina effect’.

The small arrows on Figure 4.7 indicate points where this ‘concertina effect’ has be-

come quite pronounced. Notice that in this situation, the wavenumber of the hexagonal

pattern is now some distance away from the preferred wavenumber. The system re-

sponds to this by causing two of the ‘compressed’ hexagons join together to become one

larger cell, or one ‘stretched’ hexagon to split into two smaller convection cells. After

this point, the system evens itself out, with all the hexagons returning to a similar size.

This process can also be seen by looking at the amplitudes |z1| and |z2| = |z3|. These

are plotted at four different times in Figures 4.8 and 4.9. To explain what’s happening

here, we consider the following (linear) model equation:

ż = r2z + ic̃φ(x)z +D
∂2z

∂x2
. (4.41)

This can be seen as a simplification of either (4.27) or (4.28), where only three of the

right-hand-side terms have been kept. (The coefficient D is assumed to be real and

positive.)

Substituting z = R(x) exp(iθ(x)) (where R and θ are real) we obtain

Ṙ = (r2 −Dθ′2)R +DR′′ (4.42)

θ̇ = c̃φ(x) + 2D
R′θ′

R
+Dθ′′. (4.43)
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Figure 4.7: Solution for c̃ = 0.2. Snapshots are shown every 20 time units.

The arrows indicate points where the hexagons become distorted and the

amplitude falls.
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Figure 4.8: Plots of |z1| against X for the case c̃ = 0.2. The four graphs

(a)–(d) correspond to the bottom four frames from Figure 4.7.

Figure 4.9: As Figure 4.8, but showing |z2| = |z3| instead of |z1|.
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Equation (4.43) shows that θ increases linearly with time, at a rate proportional to

c̃φ(x). This rate of increase depends on x, so the phase is ‘wound up’ over time, and

gradients θ′ develop.

Equation (4.42) shows that R evolves according to a diffusion equation, with a linear

growth term proportional to r2 −Dθ′2. Therefore, R usually grows exponentially, but if

|θ′| is large enough it can start decaying exponentially.

Note that θ′ represents a shift of the wavenumber of the basic pattern: the preferred

value of the wavenumber is 1, but if θ′ is nonzero then this is shifted to 1+θ′. Therefore,

if θ′ is large, the pattern has been stretched or compressed by a large amount. (This

corresponds to the ‘concertina effect’ mentioned above.) The wavenumber will be far

away from its preferred value, and such modes will quickly decay.

Thus our picture is that the phases of z2 and z3 are ‘wound up’ with time, until

eventually the wavenumber gets so far from critical that z2 and z3 decay sharply. This

can be seen on Figures 4.9(c) and 4.9(d). By contrast, z1 is not directly affected (since

the c̃φ term does not appear in the ż1 equation), so we see on Figure 4.8 that |z1| does

not change a great deal during the evolution.

It can be seen, therefore, that this stretching and compression process has the effect

of turning hexagons into rolls, with z1 nonzero but z2 and z3 both very small. However,

once we get close to this roll solution, we cannot stay there for long, because rolls

are unstable to hexagons (at this value of X). Therefore the amplitudes |z2| and |z3|
grow exponentially, and the system returns once again to hexagons (close to the critical

wavenumber), restarting the cycle.

A similar pattern of motion is observed for all c̃ values up to about 0.9. For smaller c̃,

e.g. 0.1, the ‘concertina effect’ is observed at one value ofX only, and the pattern repeats

with a regular period; for larger c̃, the solution is more erratic and the ‘concertina effect’

is observed at multiple values of X.

For c̃ & 0.9 a different solution is observed. The system reaches a ‘quasi-steady’

state, where the amplitudes |zj| are all unchanging with time, and only the phases

are time-varying. An example of such a solution (for c̃ = 1) is shown in Figure 4.10.

The hexagons in this picture travel, but only very slowly; they also expand slightly in

wavelength as they move from right to left. As c̃ is increased further, this state remains

(values of c̃ up to 20 were checked); the only change is that the region of hexagons

shrinks slightly and the region of rolls expands slightly as c̃ is increased.

Notice here that the rolls exist for a much larger range ofX than they usually do, even
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Figure 4.10: Quasi-steady solution for c̃ = 1. The pattern is steady apart

from a slow drift of the hexagons from right to left.

persisting in areas where only the hexagon branch is supposed to be stable. Although

it is still true that perturbations to rolls would grow exponentially, these perturbations

would also be affected by the c1φ1 terms in equations (4.27) and (4.28). For large

enough c1φ1 it seems likely that the perturbations would be quickly ‘sheared’ away by

these terms, before they had time to grow large enough to disrupt the roll solution.

Therefore, it appears that the instability leading from rolls to hexagons cannot develop

in regions where c1φ1 is too large.

Additional results

Up until now we have used initial conditions consisting of purely real values for the

amplitudes. We now consider the more general case of a complex initial perturbation.

The results for three different values of c̃ are shown in Figure 4.11. The first panel shows

the result for c̃ = 0, which is similar to the previous result (cf. Figure 4.4), except that

the rolls are now slightly curved. This curvature is a relic of the initial condition and

eventually fades away by diffusion, although it takes rather a long time to disappear

completely, because the diffusion term in the z1 equation is fourth order with a small

diffusion coefficient.

The second panel in Figure 4.11 shows the case c̃ = 0.5, which is again similar to
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Figure 4.11: The effect of using a complex initial condition instead of a

real one. Top: c̃ = 0, middle; c̃ = 0.5; bottom: c̃ = 1. As usual, the roll

patterns are steady, but the hexagonal patterns travel from right to left.

the previous results, although there is now a slightly more complicated pattern, with

the possibility of curvature in both the rolls and the hexagons, as well as rolls which are

not perfectly aligned with the x-axis. Finally, the bottom panel shows the case c̃ = 1,

which can be compared to Figure 4.10; the main difference here is that the rolls appear

to ‘break up’ into a stretched-out cellular pattern at the right-hand side of the domain

(with the left-hand side being largely unchanged).

We also briefly discuss what happens when the transition between rolls and hexagons

is supercritical rather than subcritical. (This corresponds to case II, or equation 4.30,

from section 4.3.1.) This is illustrated in Figure 4.12, which is the equivalent of Figure

4.4 for this case. Notice that the transition between rolls and hexagons is less sharply

defined in this supercritical case (as expected); however, the difference is not all that

noticeable, since the transition tends to be smoothed out by diffusion. (This does depend

on our choice of φ though: if we chose φ to vary very slowly, then in the supercritical

case we would see a very broad transition from rolls to hexagons, while in the subcritical

case, the transition region would remain narrow. In other words, in the supercritical

case the width of the transition depends directly on how quickly φ changes, whereas in

the subcritical case the width of the transition depends only on the amount of diffusion

135



Figure 4.12: The equivalent of Figure 4.4 for the supercritical case. Notice

how the transition is not quite so sharply defined as before.

in the system.)

The effects of varying φ

We have also looked at varying our function φ1(X), which describes how the tilt angle

varies with position. Instead of (4.31), we now use the following slightly more general

definition:

φ1 =
φcentre

2

(

1 − cos

(

2πX

X0

))

. (4.44)

The previous definition corresponds to φcentre = 1.5.

So far all of our solutions have contained hexagons at the edges of the domain and

rolls in the centre. This is the general situation for sufficiently large φcentre. The other

generic possibility occurs for small φcentre and here we simply get hexagons throughout

the entire domain.

There is also hysteresis between these two possibilities: both types of solution can be

stable simultaneously for certain values of φcentre. For example, this occurs for φcentre =

1.18, as illustrated in Figure 4.13. Here, both rolls and hexagons are stable solutions

when φ = φcentre, so it is possible to have either hexagons or rolls at the centre of the

domain, while at the edges, the solution is always hexagons (since φ = 0 at the edges of
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Figure 4.13: Two possible stable solutions with φcentre = 1.18, r2 = 0 and

c̃ = 0. (These are both steady solutions.)

the domain). This leads to the two possible solutions shown in Figure 4.13; depending

on the initial conditions, either of these two solutions can be obtained.

These results were obtained by setting c̃ = 0. However, it appears that this hys-

teresis effect disappears once we take c̃ 6= 0. In this case, only the upper solution of

Figure 4.13 can be obtained (at least for long times). This is because of the distortion

effect mentioned in section 4.3.3. As discussed there, the hexagons become stretched or

compressed, because of the variation of the speed of travel with position, and eventually

they are transformed into rolls. However, this time, rolls are actually stable in the centre

of the domain, so the rolls do not turn back into hexagons again. Therefore, if we use

the lower solution from Figure 4.13 as an initial condition, then it will be transformed

into the upper solution from the same Figure, if c̃ is non-zero. This is illustrated in

Figure 4.14 for c̃ = 0.3.

4.4 Numerical simulations of the full Swift-Hohen-

berg equation

We have also performed some simulations of the full Swift-Hohenberg equation (4.1).

This model has more degrees of freedom than the Landau-Ginzburg equations (4.26)–

(4.28), in a sense, because in the Swift-Hohenberg model the hexagonal lattice can be

aligned at any angle, while in the Landau-Ginzburg model a particular orientation of

the lattice has been assumed (see equation 4.19).
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Figure 4.14: Sequence showing how the hexagons evolve into rolls when

φcentre = 1.18, r2 = 0 and c̃ = 0.3. The top panel shows the initial condition

and subsequent images show snapshots every 100 time units.
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Figure 4.15: Four results from the full Swift-Hohenberg equation in rect-

angular geometry. The top two pictures correspond to a random initial con-

dition, with c̃ = 0.2 (left) and c̃ = 0.3 (right). The bottom two pictures have

a specially chosen initial condition in order to produce patterns aligned with

the x axis (both with c̃ = 0.4). The bottom right picture has a larger value

of ǫ, illustrating the ‘cross rolls’ that appear at the centre in this case. Note

that the hexagon patterns travel from right to left. The rolls are steady, ex-

cept in the top-right hand case, where the ‘steps’ in the rolls travel leftwards.

We first look at the results in a rectangular (Cartesian) domain. In this case the

results should agree with the Landau-Ginzburg model in the limit of small ǫ. In section

4.4.2 we extend the model to allow us to look at circular domains, in order to produce a

better representation of real pores and sunspots (which are usually roughly circular in

shape). The computations were all carried out using a modification of a code provided

by S. Houghton.

4.4.1 Cartesian geometry

Figure 4.15 shows typical results in a Cartesian domain. (The parameters a and b̃ were

chosen as in ‘Case I’ described in section 4.3.1; we fixed r = 0 and looked at several

values of c̃.) If ǫ is small then the results should agree with those found above (for the
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Landau-Ginzburg model); the first three pictures in Figure 4.15 have ǫ = 0.3 and we

do indeed find similar results. However, for ǫ greater than about 0.4 to 0.5, ‘cross rolls’

start to appear at the centre of the domain (see bottom right hand picture in Figure

4.15, where ǫ = 0.5). These were not seen earlier, and they might represent some sort

of instability of the convection rolls. However, they could also be artifacts caused by

the large value of ǫ (this model is only strictly speaking valid for small ǫ), so we must

be careful in interpreting them.

Note that in the bottom two pictures, a specially chosen initial condition was used,

designed to give patterns aligned with the x axis. This is the equivalent of taking a real

initial condition in the Landau-Ginzburg model, and we indeed get good agreement with

those cases. In the top two pictures of Figure 4.15, a general, random initial perturbation

was used. This case does not directly correspond to the Landau-Ginzburg equations,

since it tends to produce a randomly aligned lattice – and not one aligned with the x

axis, as assumed in the previous model (see equation 4.19). Nevertheless, the results

are similar, with a transition between hexagons at the edges and rolls in the centre of

the domain, as before. One striking feature is that the rolls always manage to align

themselves with the x axis (parallel to the tilt of the magnetic field), even sometimes

producing a curious ‘stepped’ structure in order to achieve this (see top right picture of

Figure 4.15).

4.4.2 Cylindrical geometry

We have also produced an extension of the model (4.1) in which the magnetic field’s tilt

angle takes on a two-dimensional character. In other words, instead of simply imagining

the field to be tilted in the x-direction, we allow the field to be tilted in any horizontal

direction. This can be modelled in a simple way by allowing the ‘tilt angle’ (φ in the

above) to become a two-dimensional vector rather than a scalar, indicating a direction

as well as amount of tilt. Equation (4.1) then becomes

∂ψ

∂t
= rψ − (1 + ∇2)2ψ + αψ2 − γψ3 + a|φ|2ψ + b(φ · ∇)2ψ + cφ · ∇ψ. (4.45)

This equation can now be simulated within a circular domain, with the magnetic tilt

direction pointing radially outwards. This circular configuration is more like a sunspot

or pore than our previous model, which captured the behaviour of the convection in

inclined fields, but not the particular geometry of a sunspot. We expect this extension

of the model to give qualitatively similar results, with a travelling pattern of hexagons
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and a transition to rolls for larger tilt angles, although there might now be additional

effects due to the new geometry.

It is unclear what boundary conditions should be taken around the circumference

of the domain. However, since this is intended to be an idealized, qualitative model

only, we will simply choose illustrative boundary conditions, namely either Dirichlet

(ψ = 0) or Neumann (∂ψ/∂r = 0) conditions at the outer edge. The use of two different

boundary conditions allows us to check which results are robust and do not depend on

effects at the outer boundary.

Initial results

We chose φ to be a radial vector: φ = f(r)er, with f(r) varying linearly from 0 at

the centre to 2.3 at the outer edge of the domain. This choice allows both rolls and

hexagons to appear. (The other parameters were taken from ‘Case I’ described in section

4.3.1, with r = 0.) The results, for four different values of c̃, are shown in Figure 4.16.

These results were obtained using the Dirichlet boundary condition, but we found no

qualitative differences when the Neumann boundary condition was used instead.

The four results are actually fairly similar to each other. There is a transition from

hexagons at the centre (where φ is small) to radial rolls around the edge (where φ is

large), as expected. For the c̃ = 0 case, the pattern is steady and time-independent

(after an initial transient); for c̃ > 0, the hexagons travel inward, while the rolls are

more or less steady and unchanging. The rolls contain a number of dislocations, which

arise because of the circular geometry. If we simply had a radial pattern of rolls, with no

dislocations, then the wavelength of the rolls would be increasing with radius; however,

the rolls have a preferred wavelength of 2π, and so this would not be an optimal solution.

Instead, dislocations are formed, and extra rolls are created, to keep the wavelength close

to 2π.

Notice that the boundary between rolls and hexagons is not a perfect circle at some

particular radius. Instead, the boundary is slightly blurred and ill-defined, and is irreg-

ular in shape (particularly for smaller c̃). When c̃ > 0 the boundary is also somewhat

dynamic, with patterns near the boundary constantly changing from rolls to hexagons

and back again.

This irregularly-shaped boundary is a little puzzling, given that our calculation in

section 4.3.2 predicted that the front would be located at a particular, well-defined

value of φ, which in the present model would correspond to a circle at a particular
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Figure 4.16: Results from the cylindrical model (equation 4.45). Top left:

c̃ = 0; top right: c̃ = 0.3; bottom left: c̃ = 0.6; bottom right: c̃ = 1.2.

In these pictures, the rolls are steady, while the hexagon pattern is time-

dependent (with individual hexagons travelling towards the centre).
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Figure 4.17: Results with c̃ = 0 and with a specially chosen initial condition

(left), designed to give a particular alignment of the hexagonal lattice. The

final state is shown on the right. (These are both steady solutions.) The

circle shows the expected position of the front between rolls and hexagons,

based on the calculations in section 4.3.2.

radius. However, note that in that calculation, a certain particular alignment between

the hexagonal lattice and the magnetic tilt vector was assumed. The rolls had to be

aligned along the tilt vector and so did the hexagonal lattice (see equation 4.19). In the

present results (e.g. Figure 4.16, top left picture), this condition is not always satisfied;

the angle between the hexagonal lattice and the magnetic tilt direction changes with

position. We can assume that the location of the front will also vary slightly, depending

on this angle. Therefore, we end up with an irregularly shaped front, whose radius

depends on position, as seen in the results.

As a way of illustrating this point, we have produced a result using a much more

regular initial condition, shown in Figure 4.17, left-hand panel. (Note also that we set

c̃ = 0 for this result, in order to prevent any travelling wave effects from destroying the

regularity of the pattern.) The initial condition is stable in the centre but unstable at

the circumference of the domain, so the system rapidly evolves into the steady state

shown in the right-hand panel of Figure 4.17.

Notice how the final pattern is now much more regular and symmetric than in the

previous results. Correspondingly, the front between hexagons and rolls also has a much

more regular structure than before. The position of the front now agrees well with the
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predicted position (based on the Landau-Ginzburg calculation of section 4.3.2), which

has been plotted as a circle on Figure 4.17.

Increasing the domain size with time

An interesting experiment is to allow the radius of the domain, as well as the corre-

sponding tilt angle at the outer edge, to increase with time. This can be thought of

as modelling a pore that is slowly growing with time; initially, it will contain cellular,

hexagon-like convection, but once the radius goes above a certain value, the tilt angle

at the outer edge will become large enough to allow rolls to appear. To model this

situation we have taken our usual distribution for φ (φ = φ0rer, with φ0 left constant)

but have allowed rmax to grow with time. We take a linear growth with rmax = r0 + r1t.

We ran this calculation using three different values of r1 and with a fixed value for

c̃ of 0.3. A typical result is shown in Figure 4.18. Circles have also been plotted on

the diagram, at radii corresponding to φ = φpf and φ = φsn (based on the calculations

of the previous chapter), so that rolls are stable outside the outer circle, hexagons are

stable inside the inner circle, and both patterns are stable in between the two circles.

(Note however that the values of φpf and φsn will vary slightly, depending on the chosen

orientation of the lattice – the variable θ from the previous chapter – and so the circles

should be taken as a guide only.)

When the domain is small, we find a solution consisting only of hexagons (e.g. top

left picture in each case), and when the domain grows larger, the solution has hexagons

in the centre and rolls around the edge (e.g. bottom left and bottom right pictures).

We might identify the former as a ‘pore-like’ solution and the latter as a ‘sunspot-like’

solution.

Note that one might expect the transition from hexagons to rolls to occur as φ

increases through φsn, i.e. as the boundary moves through the outermost of the two

circles plotted on the diagrams. In other words, we might expect the solution to follow

the hexagon branch until the very end, only switching to rolls after the hexagons finally

become unstable. However, this appears not to happen. Instead, the rolls seem to

appear as soon as φ reaches φpf , i.e. as the boundary moves through the innermost

circle, as seen in the top right picture of Figure 4.18. The reason for this is unclear, but

it might be due to boundary effects which cause the roll pattern to be favoured near the

boundary.

We have also performed runs in which the domain shrinks with time instead of ex-
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Figure 4.18: A run in which the radius of the domain has been allowed

to increase slowly with time. (Snapshots are shown at four different times,

with time increasing from left to right and top to bottom.) The Neumann

boundary condition has been used. The two circles indicate the radii at which

φ = φpf = 1 and φ = φsn = 1.4. Note that the rolls first appear (roughly)

as the boundary expands through the innermost circle (see top right hand

picture).
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Figure 4.19: As Figure 4.18 except that the domain is now contracting,

rather than expanding, with time. We see more or less the same sequence of

events in reverse. In particular, the rolls disappear at (more or less) the same

point at which they appeared, i.e. as the domain boundary passes through the

innermost circle. In other words, there is little or no hysteresis between the

point where the rolls appear in an ‘expanding’ run and where they disappear

in a ‘contracting’ run.
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pands (see Figure 4.19). Here we see more or less the same sequence of events in reverse,

with the transition from ‘sunspot-like’ to ‘pore-like’ configurations again occurring as

the boundary moves through the inner circle (corresponding to φ = φpf). In other words,

the model shows no hysteresis between the two configurations as the domain is expanded

and shrunk again.

Notice that the rolls in these images contain a number of dislocations along their

length. We have already seen this phenomenon (e.g. Figure 4.16), and it can be explained

as a way of maintaining the preferred wavelength of 2π despite the circular geometry.

This pattern of rolls is seen in most of our runs, but we also find one other pattern in

certain cases, and that is a spiral pattern; see Figure 4.20.

To obtain the spirals one must set the problem up quite carefully. In particular, they

seem to arise only when the domain expands very slowly (and even then, only in some

cases). Otherwise, the straight radial rolls will be seen. The spiral pattern is therefore

an interesting quirk of the model, but may not be related to any particular phenomenon

in sunspots.

Finally, note that there is a different time dependence between the two cases (Figures

4.18 and 4.20). In both cases, the hexagons travel inwards, but the behaviour of the

rolls is different. In the former case (with straight radial rolls) the rolls are steady; in

the latter case, the spiral pattern is observed to rotate with time. The spiral patterns

can rotate because they break the rotational symmetry of the system. In addition, the

pattern is drifting inwards at each point (for c 6= 0), which will create the impression

that the entire pattern is rotating.

4.5 Conclusions

In this chapter we have constructed a modified Swift-Hohenberg equation that can be

used to model convection in an inclined field where the inclination angle φ varies across

the domain (in a predefined way). We have also derived a set of three coupled Landau-

Ginzburg equations from this. This allowed the transition between rolls in one part

of the domain and hexagons in another part to be investigated. The equations were

studied in both Cartesian and circular domains – the former being easier to work with

theoretically, and the latter being closer to a real sunspot.

The Cartesian results demonstrate two main points. The first is that there can indeed

be a sharp transition, or front, between the hexagon and roll patterns (in the case where
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Figure 4.20: As Figure 4.18, except that here the domain has been ex-

panded much more slowly than before (and also the Dirichlet boundary con-

dition has been used). The rolls have formed a coherent spiral pattern, which

appears to rotate with time (in a clockwise direction).
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the bifurcation from hexagons to rolls is subcritical). The sharpness of the transition is

limited only by the amount of diffusion in the system. The other effect demonstrated by

the Cartesian results is that the hexagonal pattern travels, with a speed that depends

on position; if φ decreases along the direction of travel, as in a sunspot umbra, then

this causes the pattern to become compressed with time (since the ‘back’ of the pattern

is moving faster than the ‘front’), eventually causing adjacent pairs of hexagons to be

‘squashed’ together.

More immediately applicable to sunspots are the results in the circular domains.

Here, we find hexagonal convection in the centre of the domain, corresponding to the

umbra of a sunspot, and rolls near the circumference, which would be the penumbra.

The rolls are oriented radially, but because of the circular geometry, there cannot simply

be a pattern of radial rolls without dislocations. Instead we find either a spiral pattern

of curved rolls (which rotates with time, since the pattern is travelling inwards at each

point), or, more commonly, a static pattern of straight radial rolls, with a number of

dislocations.

These results are interesting because they show that certain features of sunspots

can be understood using only a relatively simple model. In other words, whilst many

sunspot phenomena undoubtedly require knowledge of the underlying solar physics for

their explanation, there are nevertheless some aspects that can be understood in terms

of simplified models using only minimal assumptions. Indeed, our model does not even

use the MHD equations, relying instead on simple symmetry-based arguments, and yet

it produces reasonably ‘sunspot-like’ results, if we interpret the hexagonal regions in our

models as the ‘umbra’, and the regions containing rolls as the ‘penumbra’.

Among the features of real sunspots illustrated by the model is the fact that patterns

tend to travel. Our model shows that the hexagonal patterns within the umbra tend to

travel inwards; in real sunspots, travelling features are observed within both the umbra

and the penumbra. This motion is naturally explained as a pattern drift, caused by

symmetry breaking induced by the tilted magnetic field. Note that the direction of

travel is not predictable from symmetry arguments alone – we know that patterns must

travel, but we cannot say in which direction they will travel without knowing more

about the underlying physics.

Another interesting feature of the model is that it shows quite clearly a transi-

tion in the pattern of convection from hexagons to rolls. This transition seems to be

a fundamental property of magnetoconvection in inclined fields and its existence was

149



demonstrated in the weakly nonlinear models of the previous chapter. The results in

this chapter illustrate how this can quite naturally lead to a two-component sunspot

with both an umbra and a penumbra, if the magnetic field is sufficiently tilted at the

edge of the spot. No special physics is needed; the transition occurs naturally as a result

of the (minimal) assumptions built into the model.

As would be expected given the nature of the model, there are also many details

of real sunspots that are not captured by our results. For example, the model only

applies to weakly nonlinear convection; in the strongly nonlinear conditions found in

the Sun, we would expect more complicated, and possibly more turbulent, versions of

the hexagon and roll patterns to be present (although it seems likely that the transition

from hexagonal to roll-like patterns would still exist in some form).

Another example is found in the penumbra: while our model ‘penumbrae’ consist

only of simple radially-oriented convection rolls, real penumbrae have a more compli-

cated structure, with distinct bright and dark filaments and an intricate interlocking-

comb magnetic field configuration. Clearly, this magnetic fine structure requires a more

complicated model for its explanation.

Indeed, our model does not allow for the possibility of azimuthal variations in the

magnetic field inclination. Instead, the magnetic field configuration is specified in ad-

vance (by giving the vector φ(x)) and is assumed to be unchanging during the calcu-

lation. In reality, we would expect the field to be rearranged by the convection. For

example, Weiss et al. (2004) have suggested that the penumbral fine structure starts to

form because of an instability leading to a fluted field configuration. If this is correct,

then our model would represent a sort of ‘proto-sunspot’ configuration, at a stage before

this instability has taken hold.

Another difference between our model and reality is that hysteresis between pores

and sunspots is observed (the largest pores are larger than the smallest sunspots), but no

similar effect is found in the model (see Figures 4.18 and 4.19). However, this is perhaps

not surprising given that many important physical effects are not included in the model.

For example, Weiss et al. (2004) suggest that flux pumping may be an essential part of

the explanation. (See also Rucklidge et al. 1995 for a simple method of modelling this

hysteresis.)

In summary, we see that the model presented in this chapter, a model based on

simplified equations and including very little in the way of solar physics, can nevertheless

produce results that are reasonably sunspot-like. It illustrates how some of the basic
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properties of sunspots can be explained using only simple symmetry-related arguments

– for example, a transition between umbra and penumbra seems almost inevitable, given

the transition from hexagon-like convection to roll-like convection that must occur as

the field becomes more tilted. Of course there remain many details that the model gets

wrong, and that require more intricate explanations, based on detailed solar physics

models: for example, the direction of travel of umbral and penumbral features (either

inwards or outwards), or the complex fine-scale structure of the penumbra. These can

ultimately only be explained by performing three-dimensional numerical simulations,

and this is the subject that we will turn to in the next chapter.
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