
Chapter 3

Weakly nonlinear models

3.1 Introduction

In this chapter we will move beyond simple linear models and start to cover weakly

nonlinear effects. We will use ideas from bifurcation theory and pattern formation

to construct fairly general models, which will allow us to learn something about how

convective patterns change as the inclination of the field is varied. In the next chapter,

we will also use this work as a starting point for building more detailed models.

Consider first of all the case of a vertical magnetic field. In the previous chapter,

we investigated the linear stability of the trivial solution, finding that for large enough

Rayleigh number, the layer became unstable to roll-like (plane wave) perturbations of

the form exp ik · x. At the critical Rayleigh number, we found that there was a circle

of critical modes, with |k| = kc, which were neutrally stable; all other modes decayed

exponentially. For R slightly above critical, there was a narrow annulus of modes in

Fourier space, with wavenumbers close to kc, which could grow exponentially.

We can use this linear analysis to try to predict what we might see when R is

just above critical. We might expect the convection to take the form of rolls, with

wavenumber |k| equal to (or very close to) kc. However, there are an infinite number of

such modes, because of the rotational symmetry of the problem; any wavevector lying

on the critical circle |k| = kc will do. Moreover, we can superpose two or more of these

roll modes to obtain a new pattern. Examples of this are shown in Figure 3.1, which

shows how hexagons can be obtained by superposing three sets of rolls at 120◦ to each

other, and how squares can be produced by superposing two sets of rolls at right angles.

Linear theory alone cannot distinguish between a single roll mode, or a superposi-
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Figure 3.1: Hexagon and square patterns. The first line shows a hexagonal

pattern, created by adding together three sets of rolls at an angle of 120◦ to

each other. The second line shows a square pattern, created by superposing

two sets of rolls at right angles to each other.

tion such as those shown in Figure 3.1, because the different modes would all evolve

completely independently of each other. However, once we add nonlinearities into the

problem, interactions between the different Fourier modes become possible. This means

that the theory can now distinguish between the different patterns, and we will be able

to predict which of the patterns we would see near onset. If the nonlinearities are as-

sumed to be weak, it is possible to model the nonlinear interactions based on minimal

assumptions about the underlying physics, which is what we will do in the rest of this

chapter.

3.2 General notes on pattern formation

In this section we will explain some general methods that are used for studying pattern

formation in weakly nonlinear systems. (In the following sections, we will go on to show

how these methods can be applied in particular cases.)

A standard method of dealing with systems close to a bifurcation point (in our case,

with R only just above Rc) is to apply the centre manifold theorem. This allows us

to simplify the problem by considering only the dynamics on the (extended) centre

manifold. Basically, this can be thought of as eliminating all modes of wavenumber not

equal to kc; these are ‘fast’ modes which decay exponentially with time. The critical

modes, with wavenumber equal to kc, constitute the slow dynamics. Unfortunately, with
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Figure 3.2: A periodic square lattice. The left-hand picture shows the

lattice in real space, and the right-hand picture shows the ‘dual’ lattice in

Fourier space.

the problem in its present form, the conditions of the centre manifold theorem are not

met, for two reasons: firstly, there are an infinite number of critical modes, occupying

the circle |k| = kc; secondly, the non-critical modes can be arbitrarily close to this circle

and have growth rates which can be arbitrarily close to zero.

One way to avoid both of these problems is to restrict ourselves to solutions which

are doubly periodic on some lattice; in other words, if we denote the solution by Ψ(x),

then there should exist two ‘lattice vectors’, r1 and r2, such that for all integers n1 and

n2 and for all x, Ψ satisfies Ψ(x + n1r1 + n2r2) = Ψ(x).

This restriction to a doubly periodic lattice can also be thought of as a restriction on

the Fourier transform of the solution. If we consider possible Fourier modes exp ik · x,

then clearly only certain wavevectors k will produce a function which is doubly periodic

on the given lattice. The set of such wavevectors k itself forms a lattice, in Fourier

space, which is known as the dual lattice.

These concepts are best explained by giving examples. Two lattices which are com-

monly used in these sorts of problems are the square and hexagonal lattices (so-called

because they admit the square and the hexagonal patterns from Figure 3.1).

The square lattice is illustrated in Figure 3.2. The left-hand picture shows the two

lattice vectors r1 and r2, together with the lattice points themselves (i.e. points of the

form n1r1 + n2r2 for n1 and n2 integer). For the square pattern, these points would

correspond to the centres of the squares. The right-hand picture shows the dual lattice

vectors k1 and k2, together with the dual lattice points (points of the form n1k1 +n2k2

for n1 and n2 integer). The points of the dual lattice do not correspond to physical
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Figure 3.3: The equivalent of Figure 3.2 for the hexagonal lattice.

points but rather to wavevectors of ‘admissible’ Fourier modes. The equivalent diagram

for the hexagonal lattice is shown in Figure 3.3. (The other common type of lattice is

the ‘rhombic’ lattice, where the angle between the two wavevectors k1 and k2 takes a

general value, equal to neither 90◦ nor 120◦.)

If we scale our lattice such that the dual vectors k1 and k2 are of length kc, then

the critical circle will intersect four wavevectors (in the square or rhombic case) or six

wavevectors (in the hexagonal case), as illustrated in the diagram. In other words,

whilst in the full problem there was an entire circle of critical modes, once we restrict

to a periodic lattice, there are a finite number of permissible critical modes. Moreover,

all other modes on the dual lattice are a finite distance away from the critical circle

|k| = kc, and therefore their growth rates are bounded away from zero. Hence, both

of the difficulties mentioned above are resolved, and we can reduce the problem to the

evolution of a small number of modes on the extended centre manifold.

Thus, the restriction to a periodic lattice greatly simplifies the mathematics, but it

also unfortunately restricts the set of possible patterns that can be investigated. For

example, if we chose the square lattice, we could look at rolls and square patterns. The

hexagonal lattice allows rolls and hexagons as well as some other patterns (e.g. triangles

and rectangles), but it leaves out the squares. (There is no lattice on which both squares

and hexagons can exist simultaneously.) The results must be interpreted with this in

mind, although usually we have some physical intuition about the problem, which can

inform the decision of which lattice is most appropriate to a particular situation.

Therefore we are led to consider a superposition of N different roll modes. In the
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case of a steady bifurcation, the solutions will take the following form:

Ψ =

N
∑

j=1

zj(t)e
ikj ·xΨ

(j)
0 + c.c. (3.1)

Here Ψ stands for (one or more of) the physical variables from the original problem

(u, B etc.). The kj are the wavevectors of each mode intersecting the critical circle

|k| = kc. Any vertical dependence has been factored out into Ψ
(j)
0 (which essentially

represents the vertical eigenfunction of the mode). The zj are complex functions of time

representing the amplitudes of the different modes.

In the case of the square lattice, it appears that N = 4, since four points on the

dual lattice intersect the critical circle; see Figure 3.2. However, in fact N is only 2; this

is because wavevectors k and −k are in fact equivalent (the direction of the wavevec-

tor determines the orientation of a mode, but its sense, either + or −, is irrelevant).

Similarly, for steady bifurcation on a hexagonal lattice, N = 3 and not 6.

For an oscillatory bifurcation, the form is slightly different:

Ψ =
N

∑

j=1

(

zj(t)e
ikj ·x + wj(t)e

−ikj ·x
)

e−iωtΨ
(j)
0 + c.c. (3.2)

Note the addition of the exp(−iωt) term, which represents the oscillation frequency of

each mode. This time there is a difference between wavevectors k and −k; the sense of

the wavevector indicates the direction of travel of each mode (each mode can travel in

one of two directions).

Our objective now is to come up with a set of ordinary differential equations that

govern the time evolution of the zj . These are known as the amplitude equations. In

linear theory they would be very simple: żj = szj, where s is the corresponding linear

growth rate. In weakly nonlinear theory we have to add further terms representing non-

linear interactions between the different modes. These would generally be determined

from a perturbation analysis of the original partial differential equations; the required

amplitude equations usually come out as a solvability condition.

However, we do not need to go to such lengths to gain some useful insight into the

problem. Rather, we can make use of symmetry. We know that the problem possesses

certain symmetries; in our case, the relevant symmetries are rotations, reflections and

translations of the plane, which together form the Euclidean symmetry group E(2).

(More specifically, we must consider the subset of E(2) that leaves our periodic lattice

invariant.) The amplitude equations must be consistent with these symmetries; not just
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Figure 3.4: Diagram showing the three wavevectors kj and their corre-

sponding amplitudes zj (j = 1, 2, 3), for the steady hexagonal model. Note

the orientation (represented by the angle θ); the direction of tilt of the mag-

netic field is along the x-axis.

any amplitude equations are allowed. Together with the assumption that the amplitudes

are small, this usually provides enough information to constrain the amplitude equations

quite strongly; typically the form of the equations is known, but there are one or more

undetermined coefficients.

We will now consider how these principles apply to particular choices of periodic

lattice.

3.3 Steady bifurcation on a hexagonal lattice

We start with the hexagonal lattice, since this is a natural choice for magnetoconvection,

for the following reason. From studies of magnetoconvection in vertical fields, we expect

to see a pattern of hexagons near onset. When the field is tilted we would presumably

still see a (slightly distorted) hexagonal pattern, but when the field is nearly horizon-

tal, the preferred pattern will be field-aligned rolls (Danielson, 1961). The interesting

question is what happens for field inclinations in between these two extremes.

To investigate this competition between hexagons and rolls, we consider the hexago-

nal lattice, with three wavevectors k1, k2 and k3, as illustrated in Figure 3.4. The angle

θ represents the orientation of the lattice; this is unimportant when the field is vertical

(because of the rotational symmetry), although it will become important later on, when
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we introduce non-vertical fields.

Staying with a vertical magnetic field for the moment, we can determine the most

general amplitude equations satisfying the symmetry requirements. (The relevant sym-

metry group is the subset of E(2) that leaves the hexagonal lattice invariant, which is

the group T 2
⋊ D6; T

2 represents x and y translations, while D6 represents rotational

and reflectional symmetries of the hexagonal lattice.) This is actually a well-known,

standard problem (e.g. Golubitsky et al. 1984). The equations are:

ż1 = µz1 + αz̄2z̄3 − γz1(|z1|2 + β|z2|2 + β|z3|2) (3.3)

ż2 = µz2 + αz̄3z̄1 − γz2(|z2|2 + β|z3|2 + β|z1|2) (3.4)

ż3 = µz3 + αz̄1z̄2 − γz3(|z3|2 + β|z1|2 + β|z2|2) (3.5)

The coefficients α, β, γ and µ are all real. These will depend on the various parameters

in the original problem (Q, ζ , etc.) and we cannot determine their values without more

detailed calculations. Clearly, however, we can see that µ will be an increasing function

of R, with µ = 0 when R = Rc. The coefficient α represents the amount of up-

down symmetry breaking; it is zero in an up-down symmetric case (such as Boussinesq

convection).

We have dropped terms higher than third order, which may be justified by assuming

the following scalings. The small parameter in the problem is the amount by which the

Rayleigh number exceeds critical (i.e., R−Rc). If we define ǫ such that R−Rc ∝ ǫ2, then

the amplitudes |zj| are of order ǫ. We must also assume for consistency that α = O(ǫ),

i.e. that the amount of up-down symmetry breaking is small. Each term is then of the

same order (ǫ3), and all the neglected terms are of higher order.

By rescaling time and the amplitudes, we can assume without loss of generality that

α = γ = 1. We cannot scale out β, but we do make the assumption that β > 1, which

ensures that rolls are stable in the absence of the quadratic term (which is the case for

convection).

We may also take the zj to be real (after a shift of origin if necessary). This can be

shown quite easily by writing out the equations in terms of amplitudes and phases of

the zj ; see e.g. Malomed et al. (1994).

We now turn to solutions of these equations. The bifurcation diagram as µ is varied

is shown in Figure 3.5. The trivial solution, z1 = z2 = z3 = 0, is stable for µ negative

and unstable for µ positive. There is a branch of rolls (e.g. z1 =
√
µ, z2 = z3 = 0),

which bifurcates supercritically from µ = 0, and is stable for µ sufficiently large. The
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Figure 3.5: Bifurcation diagram for the symmetric case (when all three

linear growth rates are equal). The bifurcations A, B and C occur at the

following values of µ: A at µ = −1/(4 + 8β); B at µ = 1/(β − 1)2; C at

µ = (β + 2)/(β − 1)2.

bifurcation at which the rolls gain stability also creates a branch of mixed modes, which

are rectangular in appearance, and have (e.g.) z1 = z2 6= z3; this solution is always

unstable.

Finally, there are also two branches of hexagons. These are related by a sign change

(in the three zj). The uppermost branch can be stable (for some µ values at least)

while the lower branch is always unstable (and hence unobservable). In convection, one

branch would represent a solution with upflows at the centre of each convection cell (so-

called ‘up’ hexagons), while the other would have downflows there (‘down’ hexagons). In

general, we cannot say which is which, i.e. we cannot say whether the uppermost, stable

branch corresponds to the ‘up’ or to the ‘down’ hexagons. For compressible convection,

however, we know that the ‘up’ hexagons are the stable solution (as is confirmed by

numerical simulations, for example; see also section 1.5.1).

The problem also contains hysteresis. This occurs in two separate ranges of µ values.

The first is between points A and O on Figure 3.5, where hexagons and the trivial

solution are simultaneously stable. This indicates that the onset of convection itself

is associated with hysteresis. The second region of hysteresis occurs between points B

and C, where there is bistability between rolls and hexagons. This indicates that the
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transition between hexagons (for smaller µ) and rolls (for larger µ) is hysteretic.

3.3.1 Weakly breaking the isotropy

So far, we have considered only vertical fields. When the field is tilted, anisotropy

is introduced and the symmetry between the three different modes is broken. The

translational symmetry remains, as does the reflection symmetry y → −y, but the other

reflection symmetries, as well as the isotropy, are lost. We could repeat the analysis

using the new (smaller) symmetry group, and come up with a different set of ordinary

differential equations for the zj . However, it is more enlightening to consider a situation

where the symmetry is only weakly broken. For example, if we consider a small tilt angle

φ, then the problem is strictly speaking anisotropic, but we are still very close to the

isotropic situation, and this can be exploited.

We will model this by breaking the symmetry in the linear terms only, replacing the

single value µ with different values µ1, µ2 and µ3 in each equation. Strictly speaking

the other coefficients (α, β and γ) should be changed as well, but this is not actually

necessary to break the symmetry, and we will just leave them unchanged. (We will

justify this further below.)

The new equations, with weakly broken symmetry, are:

ż1 = µ1z1 + αz̄2z̄3 − γz1(|z1|2 + β|z2|2 + β|z3|2) (3.6)

ż2 = µ2z2 + αz̄3z̄1 − γz2(|z2|2 + β|z3|2 + β|z1|2) (3.7)

ż3 = µ3z3 + αz̄1z̄2 − γz3(|z3|2 + β|z1|2 + β|z2|2) (3.8)

Since we now have two small quantities, the tilt angle φ and the ‘effective’ Rayleigh

number r ≡ (R−Rc)/Rc, it is important to clarify the scalings involved. We introduce

a small parameter ǫ and scale φ as O(ǫ), while r is (as before) taken to be O(ǫ2). We

can now write the µj as functions of both r and φ. The correct form for small ǫ is

µj = Ajφ
2 +Bj iφ+ Cr +O(ǫ3), (3.9)

where Aj , Bj and C are real constants, with A1 ≥ A2 ≥ A3. (The argument that the

growth rates must take this form for small φ was given in the previous chapter.) Ignoring

the imaginary parts (for the moment), each µj is of order ǫ2, and the amplitudes |zj |
may be scaled to be O(ǫ). We also assume once again that α = O(ǫ); each term on the

right-hand side is then of the same order (ǫ3).
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Unfortunately, the imaginary parts of the µj appear at order ǫ and thus do not satisfy

this balance. However, we can deal with this by making a Galilean transformation. To

show this we first of all write zj = Rje
iψj (with Rj and ψj real) and decompose (3.6)–(3.8)

into amplitude and phase equations:

Ṙ1 = µ1rR1 + αR2R3 cos Ψ − γ(R2
1 + βR2

2 + βR2
3)R1 (3.10)

Ṙ2 = µ2rR2 + αR3R1 cos Ψ − γ(R2
2 + βR2

3 + βR2
1)R2 (3.11)

Ṙ3 = µ3rR3 + αR1R2 cos Ψ − γ(R2
3 + βR2

1 + βR2
2)R3 (3.12)

Ψ̇ = Ω − α

(

R2R3

R1
+
R3R1

R2
+
R1R2

R3

)

sin Ψ. (3.13)

Here Ψ = ψ1 +ψ2 +ψ3 and Ω = µ1i +µ2i +µ3i. (Note that the ‘r’ and ‘i’ subscripts refer

to real and imaginary parts; e.g. µ1 = µ1r + iµ1i.)

When φ = 0, Ω = 0 and (3.13) shows that Ψ tends to zero. This means that we can

take all three zj to be real. To see this, note that we have two translational degrees of

freedom, so we can set two of the ψj to zero by shifting the origin. The condition Ψ = 0

then implies that all three ψj are zero, i.e. all zj are real.

When φ 6= 0 it appears that Ω will become non-zero (see equation 3.9), invalidating

the argument. However in our problem it can be shown that B1 + B2 + B3 = 0 (see

below), so that Ω is in fact O(ǫ3); to balance (3.13), Ψ must then remain of order ǫ.

Therefore in (3.10)–(3.12), we should consistently set cosΨ = 1 at this order; Ψ then

decouples and the net result is that we are left with (3.6)–(3.8) again, except that now

the imaginary parts of the µj can be ignored and one can assume that all the zj (and

µj) are real. (Therefore, we will drop the suffix ‘r’ from now on, writing µj in place of

µjr.) This is equivalent to transforming to a moving frame in which the patterns appear

steady.

The condition B1 + B2 + B3 = 0 is in fact clear from a small-φ expansion (up to

first order) of the linearized equations of the previous chapter (equations 2.15–2.23).

Since φ now appears only in the combination kxφ, it can be seen that the equations are

now invariant under rotations of the wavevector k as long as one adjusts φ to ensure

that kxφ remains unchanged. Therefore, since we know that the oscillation frequency is

proportional to φ at this order, this argument shows that it is also proportional to kx

(at fixed |k|). Hence, since k1x + k2x + k3x = 0, it follows that B1 +B2 +B3 = 0.

We can now explain why we do not have to break the symmetry in the coefficients α,

β and γ, i.e. why we do not have to write out separate values α1, α2 and α3 in the three

equations rather than just the single value α (and similarly for β and γ). Clearly, all
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three αj must be equal when φ = 0, and so we have αj = α+O(φ); since φ = O(ǫ), the

corrections that this would produce would all appear at fourth order in ǫ (at least). Since

we are dropping all terms of order ǫ4 and higher, these corrections should be consistently

neglected, and the symmetry should be maintained in α; the same applies to β and γ.

(Another way of putting this is that there exists a near-identity transformation that

reduces the system to the above form.) Conversely, note that with these scalings the

asymmetry in µ appears at order ǫ3, and the broken symmetry in µ must be included.

As before, we assume β > 1, and rescale time and the amplitudes to ensure that

α = γ = 1. By rescaling φ and r, we can also choose A3 = 1 and C = 1.

We remark that once the isotropy is broken (for φ 6= 0), the orientation of the

hexagonal lattice, represented by the angle θ on Figure 3.4, is now important. Note

that without loss of generality we can choose 0◦ ≤ θ ≤ 30◦. This is for two reasons:

firstly, the lattice itself is invariant under rotations by 60◦ (with a corresponding cyclic

permutation of the kj and zj); secondly, the y → −y reflection symmetry means that θ

and −θ will be equivalent, which halves the range of angles that must be considered.

The angle θ = 30◦ would probably be the most relevant choice, since the linear

theory showed that parallel rolls (with the wavevector pointing in the y-direction) were

the most unstable mode, and this mode is included (as k1) when θ = 30◦. However, it

is interesting to look at other values of θ as well, because in a sense, all modes would be

present in the full problem (for example, if numerical simulations were to be performed).

This problem, in the form (3.10)–(3.12), has been studied before, although in a

different context, by previous authors. Malomed et al. (1994) give bifurcation diagrams

which use (µ1, µ2, µ3) directly as bifurcation parameters; these are not directly related

to our parameters r and φ. Nevertheless they provide several useful analytic results

which we have made use of in this chapter. Matthews (1998) has produced bifurcation

diagrams showing how the standard picture of Figure 3.5 changes once the symmetry

is broken – we have reproduced these below, since they are directly equivalent to our

problem in the case when φ is held fixed at a small non-zero value, and r is changed.

3.3.2 Changes to the bifurcation diagrams

Once the symmetry is broken, the bifurcation diagrams of Figure 3.5 undergo several

changes. The first relates to the roll solutions. Previously, the three possible orientations

of rolls all had the same properties, because they were related by symmetry; therefore
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Figure 3.6: Distortion from a pure hexagon solution as the asymmetry is

increased.

there was effectively only one branch of rolls. Now that the symmetry is broken, this

splits into three separate branches, one for each possible orientation, and each having

slightly different properties. We will denote the roll branch with zj non-zero by Rj . The

solution R1 is stable if

2βµ1 − µ2 − µ3 > 0 and (βµ1 − µ2)(βµ1 − µ3) > µ1 (3.14)

(Malomed et al., 1994).

The second change relates to the hexagon and rectangle (or mixed mode) branches.

Previously we could make a clear distinction between the hexagons and the rectangles,

in the sense that hexagons have z1 = z2 = z3, while rectangles have e.g. z1 = z2 6= z3.

Once the symmetry is broken, this distinction does not apply, and we can only really

describe these branches as ‘mixed modes with all three zj different’. However, since the

symmetry breaking is weak, we will still be able to recognize the mixed mode branches

as slightly distorted versions of the original patterns (either hexagons or rectangles).

Therefore, we will continue using the name ‘hexagons’ (and the label H) for the stable

‘mixed mode’ branch, although it should be understood that these are not perfectly

regular hexagons, but are instead slightly distorted in appearance.

This effect is illustrated in Figure 3.6, where we have plotted a pure hexagon solution

(|z1| = |z2| = |z3|) at the far left, a pure roll solution (z2 = z3 = 0) at the far right,

and ‘distorted hexagon’ solutions (with |z1| > |z2| = |z3|) in between. For very weakly

broken symmetry (second picture), the solutions are only slightly distorted from the

original hexagon pattern, but for more strongly broken symmetry (third picture) the

pattern becomes much closer to the rolls in appearance.

We will now plot bifurcation diagrams showing how Figure 3.5 changes once the

symmetry is broken. We do this in three different cases. The first (corresponding to the

work of Matthews 1998) has φ fixed and r varying. The second is the reverse, with fixed

r and variable φ. Finally, we plot diagrams for the general case where both r and φ
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Solution Condition for stability φ2
pf

R1 (always)
A1

(βA1 − A2)(βA1 − 1)

R2 A1 < min(2βA2 − 1, βA2)
A2

(βA2 − A1)(βA2 − 1)

R3 β > max(A1, A2)
1

(β −A1)(β − A2)

Table 3.1: Stability properties for rolls. There are two possibilities. If the

condition in the second column is met then the rolls are stable for φ2 > φ2
pf

where φ2
pf is given in the third column. If the condition in the second column

is not met then the rolls are never stable.

are allowed to vary, although for simplicity we have restricted this to the special values

θ = 0◦ and θ = 30◦.

Bifurcation diagrams for fixed φ

The bifurcation diagrams given by Matthews (1998), reprinted in Figure 3.7, correspond

to taking a fixed small value of φ and allowing r to vary.1 Apart from the roll branch

splitting into two or three separate branches, as mentioned above, the changes from the

isotropic case are minimal: both regions of hysteresis still exist, and we still have the

stable trivial solution for low r and stable hexagons for intermediate r. There is one

other change, relating to the rolls: they are stable for large r as before, but they can

also be stable in a (very narrow) range of r values near the initial bifurcation from the

trivial solution. (This occurs for θ 6= 0◦.)

Bifurcation diagrams for fixed r

We consider the case r = 0, which corresponds to setting the Rayleigh number equal to

the critical Rayleigh number for a vertical field (so that the trivial solution is neutrally

stable when φ = 0). We then allow the tilt angle to increase above zero. As this is

done, the critical Rayleigh number falls (because of the decreasing vertical component

of the magnetic field, as was discussed in the previous chapter), and so the growth rates

for the three modes become positive. (In other words, there should be a bifurcation at

φ = 0 at which the three roll modes appear.)

1These figures are from Matthews (1998), c©1998 Elsevier, reproduced with permission.
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Figure 3.7: Bifurcation diagrams (from Matthews 1998) showing the

changes to Figure 3.5 once the symmetry is broken. Note that Matthews’

λ1 corresponds to our r (with φ fixed at a small non-zero value). The three

pictures correspond to different values of θ, as follows: Top picture: θ = 0◦;

middle picture: θ = 30◦; bottom picture: 0◦ < θ < 30◦.
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Figure 3.8: Bifurcation diagrams for r = 0 and variable φ. The amplitude

(|z1|2 + |z2|2 + |z3|2)1/2 is plotted against φ for (a) β = A1 = A2 = 3 (corre-

sponding to θ = 0◦); (b) β = 4, A1 = 1.5, A2 = 1 (corresponding to θ = 30◦);

(c) β = 1.2, A1 = 1.5, A2 = 1 (also corresponding to θ = 30◦); (d) β = 4,

A1 = 1.5, A2 = 1.25 (corresponding to 0◦ < θ < 30◦). (Note that for clarity,

some of the unstable solution branches have been omitted.)
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Bifurcation diagrams for a number of values of β, A1 and A2, produced with the

program auto (Doedel, 1981), are shown in Figure 3.8. We see that the three roll modes

do indeed bifurcate from φ = 0, and that they are all unstable initially. It is possible

for them to become stable for larger φ (at pitchfork bifurcations). The conditions for

stable rolls are given in Table 3.1; these can be obtained from (3.14) using the equation

µj = Ajφ
2. Note that R1 rolls are always stable for φ large enough, while R2 and R3

may or may not become stable.

For the hexagons, there are two qualitatively different cases, depending on θ. The

case θ = 0◦ (corresponding to A1 = A2), illustrated in Figure 3.8(a), is special. In this

case the hexagon branch joins onto an unstable branch of ‘mixed modes’, which then

connects back to the R12 branch; there is always hysteresis between rolls and hexagons

for this value of θ. The general case is θ 6= 0 (or A1 6= A2), corresponding to Figures

3.8(b)–3.8(d). Here the hexagons always connect to the R1 branch at the point where the

latter becomes stable (this is the pitchfork bifurcation φ = φpf in the notation of Table

3.1). This pitchfork can be either supercritical (Figure 3.8c) or subcritical (Figures

3.8b and 3.8d). In the supercritical case, there is no possibility of hysteresis, but in

the subcritical case, the hexagon branch turns around at a saddle-node bifurcation, and

there is hysteresis between rolls and hexagons. We have not been able to find analytically

the position of this saddle-node bifurcation, and so we cannot give a formula for the

‘amount’ of hysteresis, i.e. the width of the interval in φ for which there is bistability,

although we find that this interval tends to be widest when β is small (close to 1), or

when the three Aj are close together in value.

In the specific case of θ = 30◦ (where A2 = 1), we can determine analytically whether

the bifurcation is supercritical or subcritical. First compute Ac by the following formula:

1

Ac

= β +
2(1 + β − 2β2)

2β +
√

2β + 2
. (3.15)

If Ac is negative, then the bifurcation is subcritical. If Ac is positive, then the bifurcation

is supercritical for A1 > Ac, or subcritical for A1 < Ac. (The derivation of this condition

is given in Appendix C.)

Bifurcation diagrams varying both r and φ

Finally we consider the general case where both r and φ are allowed to vary simultane-

ously. For simplicity we restrict our results to the cases θ = 0◦ and θ = 30◦. In such

cases two of the µj will be equal; for example, we might have µ1 = µ2 = µ, so that the
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Figure 3.9: Diagrams showing the stability regions of rolls (R), hexagons

(H) and the trivial (equilibrium) solution (E) as functions of r and φ, for

(a) β = A1 = A2 = 3, corresponding to θ = 0◦; (b) β = 4, A1 = 1.5, A2 = 1,

corresponding to θ = 30◦.
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way to the r–axis, although it does become extremely narrow as φ→ 0.
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two bifurcation parameters are µ and µ3. These can be related to our parameters r and

φ by a simple change of variables. In such cases, Malomed et al. (1994) give plots of

the stability regions in the µ-µ3 plane. We can easily convert their results to the new

coordinate system defined by r and φ and thus produce diagrams of the stability regions

of the various solutions in terms of r and φ. See Figure 3.9, and also Figure 3.10, which

is an enlargement of part of Figure 3.9(b).

The basic features of the diagrams are essentially independent of the parameters;

although the sizes and positions of the stability regions can change, the topology seems

to remain unaltered. We see rolls for large r or large φ, with a region of stable hexagons

for low φ and intermediate r. In addition there is typically an area somewhere in

parameter space of bistability between rolls and hexagons, indicating that hysteresis is

a generic possibility, at least for some paths through parameter space.

Note that the bifurcation diagrams shown previously can be related to the graphs

of Figure 3.9. For example, the diagrams of section 3.3.2, corresponding to the work

of Matthews (1998), correspond on Figure 3.9 to moving upwards along the line φ = η

(where η is a small positive constant), a vertical line slightly to the right of the r-axis.

Moving along this path on Figure 3.9(a), which corresponds to θ = 0◦, would give the

bifurcation diagram shown in Figure 3.7 (top panel). For Figure 3.9(b), corresponding

to θ = 30◦, the middle panel of Figure 3.7 would result. Note that in both cases the

sequences of stable and unstable patterns shown in our diagram (Figure 3.9) agree with

the work of Matthews (1998) (Figure 3.7). In the latter case, this is perhaps more

difficult to see because of the small region near onset where rolls can be stable, visible

on Figure 3.7 (middle panel) near λ1 = δ. On our diagram (Figure 3.9b) this in fact

corresponds to the narrow wedge marked ‘H , R1’ which actually extends leftwards all

the way to the φ-axis; this can hopefully be seen more clearly on the enlargement shown

in Figure 3.10.

The bifurcation diagrams of section 3.3.2, in which r = 0 and φ was varied, of course

correspond to moving along the horizontal line r = 0 on Figure 3.9. On Figure 3.9(a),

this line moves from the region ‘H ’, to ‘H , R12’, and finally to ‘R12’; therefore, there is

hysteresis between rolls and hexagons. Indeed there will always be such hysteresis, no

matter what path one takes through parameter space, because the only way to move

from region ‘H ’ to region ‘R12’ is via the region of bistability (except for the non-generic

case in which one moves through the codimension-2 point at the very bottom right of

the ‘H ’ region).
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Figure 3.11: The wavevectors (kj) and corresponding complex amplitudes

(zj and wj) used for the oscillatory hexagonal model. The arrows represent

the direction of travel of each mode. As before, the direction of tilt of the

magnetic field will be in the x–direction.

By contrast, on Figure 3.9(b), there are two distinct routes from the tongue-shaped

‘H ’ region to the ‘R1’ region. One involves going through the ‘side’ of the tongue, up

and into the ‘H , R1’ region, and then into the ‘R1’ region. The other route goes through

the ‘tip’ of the tongue at the far right-hand side, and thus goes directly into the ‘R1’

region without any hysteresis or bistability in between. Now, with the parameter values

as chosen in Figure 3.9(b), the line r = 0 takes the former route, going via a region

of bistability before finally reaching the region where only rolls are stable. However, if

different parameters are chosen, then the regions can shift around in such a way that

the line r = 0 moves through the ‘tip’ of the tongue rather than its ‘side’; this would

correspond to the supercritical case mentioned in section 3.3.2, and there would be no

hysteresis in this case. However, note that the region of bistability still exists – it has

just been moved up to a higher value of r. Therefore, hysteresis could still be seen

for these values of A1 and β, but one would have to move on a different path through

parameter space, e.g. by varying φ and fixing r, not at zero, but at some appropriate

positive value; or indeed by fixing φ, at an appropriate value, and varying r.

3.4 Oscillatory bifurcation on a hexagonal lattice

For small ζ (and sufficiently large Q), the initial bifurcation to convection is oscillatory

rather than steady. This means that the representation (3.2) must be used instead of

(3.1) for our solutions (with N = 3 for the hexagonal lattice). The six modes, with

complex amplitudes zj and wj (j = 1, 2, 3), are shown in Figure 3.11.

Using the same approach as before, we can determine the most general set of am-
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plitude equations for these six modes that are consistent with the symmetries of the

problem. In the case of a vertical field, the relevant symmetry group is (T 2
⋊D6)× S1.

(T 2 and D6 have the same meanings as before; the extra symmetry S1 corresponds to

a time shift symmetry, which essentially comes about because t now explicitly appears

in the representation (3.2)). The amplitude equations consistent with this symmetry

group are (Roberts et al., 1986):

ż1 = [µ+ a|z1|2 + b|w1|2 + c(|z2|2 + |z3|2) + d(|w2|2 + |w3|2)]z1 + f(z2w2 + z3w3)w̄1

(3.16)

ż2 = [µ+ a|z2|2 + b|w2|2 + c(|z3|2 + |z1|2) + d(|w3|2 + |w1|2)]z2 + f(z3w3 + z1w1)w̄2

(3.17)

ż3 = [µ+ a|z3|2 + b|w3|2 + c(|z1|2 + |z2|2) + d(|w1|2 + |w2|2)]z3 + f(z1w1 + z2w2)w̄3

(3.18)

ẇ1 = [µ+ a|w1|2 + b|z1|2 + c(|w2|2 + |w3|2) + d(|z2|2 + |z3|2)]w1 + f(z2w2 + z3w3)z̄1

(3.19)

ẇ2 = [µ+ a|w2|2 + b|z2|2 + c(|w3|2 + |w1|2) + d(|z3|2 + |z1|2)]w2 + f(z3w3 + z1w1)z̄2

(3.20)

ẇ3 = [µ+ a|w3|2 + b|z3|2 + c(|w1|2 + |w2|2) + d(|z1|2 + |z2|2)]w3 + f(z1w1 + z2w2)z̄3

(3.21)

Here, µ is the (complex) linear growth rate, and a, b, c, d and f are complex constants.

Note that there are no quadratic terms in the oscillatory case, even when the up-down

symmetry is broken. (This is a consequence of the extra time shift symmetry.)

Roberts et al. (1986) found eleven branches of solutions to these equations, which

are listed in Table 3.2. Note that not all of these solutions will be found to be stable in

our model (more on this below).

Figures 3.12 and 3.13 show graphical depictions of some of the solutions. These plots

are obtained from the six amplitudes by using equation (3.2). Note that the solutions

are functions of time: for the solutions shown in Figure 3.12, the only time-dependence

is that the pattern travels with a constant speed, while for the patterns in Figure 3.13,

there is a more complicated time-dependence and we have plotted snapshots at various

time points. The time is expressed in units such that the period of the solution is 1.

Only the first half of this period is plotted; the second half (from t = 1/2 to t = 1) is

the same as the first half (from t = 0 to t = 1/2), but with a sign change.
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Solution Label Amplitudes

oscillating triangles OT (r, r, r, 0, 0, 0)

standing hexagons SHe (r, r, r, r, r, r)

standing rectangles SRe (0, r, r, 0, r, r)

standing regular triangles SRT (r, r, r,−r,−r,−r)
standing rolls SRo (r, 0, 0, r, 0, 0)

travelling rectangles (1) TRe1 (r, 0, r, 0, 0, 0)

travelling rectangles (2) TRe2 (r, 0, 0, 0, 0, r)

travelling rolls TRo (r, 0, 0, 0, 0, 0)

twisted rectangles TwRe (r, re2πi/3, re4πi/3, r, re2πi/3, re4πi/3)

wavy rolls (1) WR1 (r, 0, r, r, 0,−r)
wavy rolls (2) WR2 (r, re2πi/3, re4πi/3,−r,−re2πi/3,−re4πi/3)

Table 3.2: The solutions found by Roberts et al. (1986) to equations (3.16)–

(3.21), together with typical values for the amplitudes (z1, z2, z3, w1, w2, w3)

(r represents a real number).

TRo TRo TRo TRe1

Figure 3.12: Solutions to equations (3.16)–(3.21). The TRo travel in a

direction perpendicular to the roll axes; the TRe1 branch shown travels in

the x-direction.

88



OT

t = 0 t = 1/12 t = 2/12

t = 3/12 t = 4/12 t = 5/12

SRo

t = 0 t = 1/8 t = 2/8 t = 3/8

WR1

t = 0 t = 1/16 t = 2/16 t = 3/16

t = 4/16 t = 5/16 t = 6/16 t = 7/16

Figure 3.13: Solutions to equations (3.16)–(3.21).
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3.4.1 An additional solution branch

In finding the above solutions, Roberts et al. (1986) used the equivariant Hopf theorem,

which is an effective method, although it has the drawback that it is not guaranteed

to find all possible solutions. We have taken a more elementary approach, simply by

inspecting the equations in various cases (the full details are given in Appendix C).

Our method still does not find all possible solutions, but we do find the eleven solution

branches found by Roberts et al. (1986), plus one additional solution. This new solution

does not have a one-complex-dimensional fixed point subspace, which is why it was not

encountered by Roberts et al. (1986).

This new solution has the following form:

z1 = z2 6= 0; w3 6= 0; z3 = w1 = w2 = 0 (3.22)

|z1|2 =
µr(dr − ar)

a2
r − 2d2

r + arcr
(3.23)

|w3|2 =
µr(2dr − ar − cr)

a2
r − 2d2

r + arcr
(3.24)

d

dt
(arg z1) = µi + (ai + ci)|z1|2 + di|w3|2 (3.25)

d

dt
(argw3) = µi + ai|w3|2 + 2di|z1|2. (3.26)

These equations, together with stability criteria for the solution, are derived in Ap-

pendix C. Unfortunately it is not possible to write down the stability conditions in a

simple form; however, it is a straightforward matter to compute the stability eigenvalues

numerically. We have found that the solution is often unstable, but it is stable for (at

least) the following choice of parameters: a = −1, b = −1.5, c = −0.2, d = −0.3 and

f = −0.1 (for which |z1| = |z2| = 0.828
√
µr and |w3| = 0.767

√
µr). We have confirmed

this result by numerically solving (3.16)–(3.21) as an initial value problem; one such run

is shown in Figure 3.14, which demonstrates the existence and stability of the solution

in this case.

The solution in this case is shown in Figure 3.15. Note that it resembles the oscillating

triangle solution, albeit with a slight asymmetry (since |z1| and |w3| take slightly different

values). The difference is that as well as oscillating between regular hexagons and regular

triangles, the new solution also appears to drift (upwards and rightwards in the case

shown in Figure 3.15). The other main difference is that the OT solution oscillates

between hexagons and triangles much more quickly (in fact, three times more quickly)
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Figure 3.14: Numerical solution of (3.16)–(3.21), illustrating the existence

and stability of the new solution branch. The six amplitudes |z1|, |z2|, |z3|,
|w1|, |w2| and |w3| are plotted against time. (The parameters were: a = −1,

b = −1.5, c = −0.2, d = −0.3 and f = −0.1, with µ = 1.)

t = 0 t = 1/16 t = 2/16 t = 3/16

t = 4/16 t = 5/16 t = 6/16 t = 7/16

Figure 3.15: The new ‘drifting oscillating triangles’ solution.
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than this new solution does, as can be seen by comparing the relevant figures. (In terms

of symmetries, the oscillating triangles have a spatiotemporal symmetry consisting of

a time shift of 1/3 of the total period together with a translation; the new ‘drifting

oscillating triangles’ actually have no spatiotemporal symmetries.)

We have not considered what happens to this solution when the equations are trun-

cated at higher order than third order. A version of equations (3.27)–(3.32) truncated at

fifth order, instead of third, is given by Roberts et al. (1986) (see their Proposition 2.2).

These equations contain non-zero terms at fifth order in the equations for ż3, ẇ1 and ẇ2

(these are the three variables that are zero in our third-order solution). Therefore, the

solution at higher order will have small (rather than identically zero) values for z3, w1

and w2; this might cause the solution to have slightly different properties (although we

have not investigated this in detail).

The reason that Roberts et al. (1986) did not find this new solution branch is that

it does not have maximal isotropy. In fact, the only symmetry possessed by the new

solution is the reflection symmetry that exchanges z1 and z2, and w1 and w2. None of

the other elements of D6 are symmetries, nor are there any spatiotemporal symmetries.

Therefore the isotropy subgroup of this solution is just Z2. The corresponding fixed

point set is (z1, z2, z3, w1, w2, w3) = (p, p, q, r, r, s) (where p, q, r and s are arbitrary

complex numbers) which is 4-D complex; a 1-D complex fixed point set would have

been needed for the solution to be detectable via the usual methods (the equivariant

Hopf theorem).

3.4.2 Weakly broken symmetry

We would now like to investigate non-vertical magnetic fields, and we (once again) do

this by weakly breaking the isotropy, introducing a small tilt angle φ. As before, we
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break the symmetry in the linear terms only, leading to:

ż1 = [µ1 + a|z1|2 + b|w1|2 + c(|z2|2 + |z3|2) + d(|w2|2 + |w3|2)]z1 + f(z2w2 + z3w3)w̄1

(3.27)

ż2 = [µ2 + a|z2|2 + b|w2|2 + c(|z3|2 + |z1|2) + d(|w3|2 + |w1|2)]z2 + f(z3w3 + z1w1)w̄2

(3.28)

ż3 = [µ3 + a|z3|2 + b|w3|2 + c(|z1|2 + |z2|2) + d(|w1|2 + |w2|2)]z3 + f(z1w1 + z2w2)w̄3

(3.29)

ẇ1 = [µ′

1 + a|w1|2 + b|z1|2 + c(|w2|2 + |w3|2) + d(|z2|2 + |z3|2)]w1 + f(z2w2 + z3w3)z̄1

(3.30)

ẇ2 = [µ′

2 + a|w2|2 + b|z2|2 + c(|w3|2 + |w1|2) + d(|z3|2 + |z1|2)]w2 + f(z3w3 + z1w1)z̄2

(3.31)

ẇ3 = [µ′

3 + a|w3|2 + b|z3|2 + c(|w1|2 + |w2|2) + d(|z1|2 + |z2|2)]w3 + f(z1w1 + z2w2)z̄3

(3.32)

Recall that once φ becomes non-zero, the orientation of the lattice is important. For

simplicity, we have restricted ourselves to one particular orientation, as illustrated in

Figure 3.11. We have picked k1 to lie on the x-axis; this corresponds to perpendicular

rolls, which are the most unstable mode for small φ (as shown in the previous chapter),

so we are including the most unstable mode plus five other modes. We then have the

following form for the growth rates for small r and small φ:

µ1 = γr − αφ (3.33)

µ2 = µ3 = γr + βφ (3.34)

µ′

1 = γr + αφ (3.35)

µ′

2 = µ′

3 = γr − βφ (3.36)

where α, β and γ are complex constants. Here we have scaled both r and φ as O(ǫ) and

expanded the growth rates to first order in ǫ. All the terms in equations (3.27)–(3.32)

are now of order ǫ3.

Before proceeding, we briefly discuss the effects that the symmetry-breaking has on

the solutions. As in the steady case, once the symmetry is broken we find that many of

the solution branches ‘split’ into two or more separate branches, that previously were

related by symmetry, but now are genuinely different solutions. These are summarized in

Table 3.3. For example, there are now four different branches of travelling rolls (labelled
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Solution Label Amplitudes

travelling rolls TRo(a) (0, 0, 0, x, 0, 0)

TRo(b) (0, x, 0, 0, 0, 0) or (0, 0, x, 0, 0, 0)

TRo(c) (0, 0, 0, 0, x, 0) or (0, 0, 0, 0, 0, x)

TRo(d) (x, 0, 0, 0, 0, 0)

standing rolls SRo(a) (x, 0, 0, y, 0, 0)

SRo(b) (0, x, 0, 0, y, 0) or (0, 0, x, 0, 0, y)

travelling rectangles (1) TRe1(a) (0, x, x, 0, 0, 0)

oscillating triangles OT(a) (0, 0, 0, x, y, y)

OT(b) (x, y, y, 0, 0, 0)

wavy rolls (1) WR1(a) (0, x, x, 0, y, y)

Table 3.3: The solutions found to equations (3.27)–(3.32) and typical forms

of the amplitudes (|z1|, |z2|, |z3|, |w1|, |w2|, |w3|) in each case. (Here, x and y

represent real numbers. More details on the exact form of each solution

branch can be found in Appendix C.) Only solutions that are found to be

stable (in the analysis below) have been shown. Note that there are multiple

forms of some of the solution branches, because of the asymmetry; these

different forms have been indicated by lower-case letters, e.g. TRo(a–d).
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‘a’–‘d’), instead of just one. (There are not six, one for each zj and each wj, because we

still have the y → −y reflection symmetry; for example, ‘z2-rolls’ and ‘z3-rolls’ are still

equivalent, but they are different to ‘z1-rolls’.)

Figure 3.16 shows graphically how the symmetry breaking changes the appearance

of some of the solution branches (compare this to Figure 3.13). Here we have broken

the symmetry by taking |zj | and |wj| each to be slightly different, as follows: |w1| = 1.6,

|z2| = |z3| = 1.3, |w2| = |w3| = 1.0, and |z1| = 0.7. (These values are to be substituted in

place of x and y in Table 3.3.) The values have been chosen arbitrarily; they are intended

purely to illustrate how the solutions change when the amplitudes are no longer all equal.

For SRo, the asymmetry means that the solution does not return to the ‘zero’ state

at t = 2/8 as it did before. For OT(a), the solutions start to look a little more like a

perpendicular roll pattern (because of the dominance of that particular roll mode). For

WR1, the solution no longer reaches a ‘pure’ roll state at each end of the oscillation.

Note also that the asymmetry has no effect on the TRo or TRe1 solutions.

Returning to our amplitude equations, we can rescale φ and r to ensure that αr =

γr = 1, leaving βr, αi, βi and γi as free parameters. We can also rescale time and

the amplitudes to remove two degrees of freedom from the choices of a, b, c, d and f .

Thus there are effectively 12 undetermined coefficients in the problem as well as the

parameters r and φ.

The coefficients a, b, c, d and f present a problem, since they represent five complex

parameters whose values cannot be determined from symmetry arguments alone. How-

ever, Clune and Knobloch (1994) have performed a perturbation analysis of the equa-

tions for Boussinesq magnetoconvection, using a vertical field and illustrative boundary

conditions (magnetic field constrained to be vertical at top and bottom), and found the

values of these coefficients for a wide range of Q, ζ and σ values.

Therefore, our approach will be to look at the patterns found by Clune and Knobloch

(1994) to occur in magnetoconvection, and see how these change as one introduces a

slightly tilted field. The most common pattern that they find is OT, and there are

large regions of parameter space where this is the only stable solution. There are also

fairly large regions where TRo are the only stable solution, and where OT and SRo are

simultaneously stable.

Now suppose, for example, that we are in a situation where OT are the only stable

pattern when φ = 0, and we want to know what happens as φ is increased above zero.

To answer this we need to choose a set of values for a, b, c etc. that would lead to
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SRo(a)

t = 0 t = 1/8 t = 2/8 t = 3/8

OT(a)

t = 0 t = 1/12 t = 2/12

t = 3/12 t = 4/12 t = 5/12

WR1(a)

t = 0 t = 1/16 t = 2/16 t = 3/16

t = 4/16 t = 5/16 t = 6/16 t = 7/16

Figure 3.16: Solutions to equations (3.27)–(3.32).

96



Stable solutions

Case a b c d f in symmetric case

(a) −1.5 + 2i −3 + 2.2i −3 + 0.5i −3 + 0.8i −1 − 2i TRo

(b) −10 −9.6 −1 −9.5 −4.2 OT

(c) −3 − 1.1i −1.5 + 0.3i −1.7 + 0.7i −4 + i −1.8 + i SRo & OT

Table 3.4: The values chosen for the nonlinear coefficients a, b, c, d and f .

such a situation. Unfortunately, this choice is far from unique; there are many such sets

of values that would give OT as the only stable pattern when φ is zero. We can only

repeat our analysis for several different sets of parameter values, each having OT stable

at φ = 0, and try to determine which features of our results are robust. This can of

course be done for other situations as well – we will also look at the cases where TRo are

the only stable solution for φ = 0, and where SRo and OT are the only stable solutions

for φ = 0.

One must also choose values for α, β and γ. We have chosen to investigate the

particular values βr = 0.65, αi = 0.5, βi = 0.7, γi = 0 in detail. These have been chosen

arbitrarily, but they illustrate the typical behaviour; the effects of changing these values

will be discussed (briefly) below.

The results, showing the existence and stability regions for the various patterns, are

shown in Figure 3.17. The values of the coefficients a, b, c, d and f that were used in

each case are given in Table 3.4. The boundaries of the existence and stability regions

are always radial lines through the origin. It can be seen that for small φ (or large

r), the stable patterns are the same as in the symmetric problem (as required), but

for larger tilt angles new patterns can be made to appear. Generally speaking, one

finds that TRo(a) usually become stable for the larger values of φ. Note that TRo(a)

corresponds to perpendicular rolls, which are the preferred mode in linear theory for φ

below the Lifshitz point. (The model in this section is valid only for small tilt angles,

as has already been discussed. Therefore we never get into the regime where either

oblique or parallel rolls become preferred in linear theory.) We also find that TRe1(a)

are often (but not always) stable for large φ, a situation illustrated by cases (b) and (c).

In addition, when SRo and OT are both stable for small φ, illustrated by case (c), wavy

rolls of the first kind (WR1) can be stable for some regions of parameter space.
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Figure 3.17: Results for the oscillatory hexagonal model. The coloured arcs

represent the different solution branches; solid lines indicate a region where

there is a stable solution, and dashed lines indicate an unstable solution. (The

radial lines represent the bifurcations.) See text for further explanation.
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Figure 3.18: The four modes included in the rhombic lattice (showing the

wavevectors and corresponding complex amplitudes). Note that the magnetic

field is tilted in the x-direction (as usual).

Figures 3.17(a–c) were each produced with particular choices for the coefficients. We

have, as explained above, also tried different values of the various parameters in order

to check the robustness of the results. In cases where TRo are the only stable pattern at

φ = 0, it appears that the qualitative picture of Figure 3.17(a) is always found, whatever

the particular parameter values chosen. In other cases, there can be some changes. The

set of possible stable patterns always seems to remain the same, with the exception of

TRe1(a), which was found to be stable only in certain cases. However, the exact position

of the bifurcation lines, and indeed the order in which those bifurcations are encountered

as one moves around the origin, can vary depending on the precise parameter values

chosen.

3.5 Oscillatory bifurcation on a rhombic lattice

Our final piece of work in this chapter will be to consider the oscillatory problem on a

rhombic lattice instead of a hexagonal one. See Figure 3.18. The motivation for this

choice of lattice comes from the linear theory, and in particular to the regime where

oblique rolls are preferred. A rhombic lattice can include the two preferred modes (rep-

resented by z1 and z2) as well as their counterparts travelling in the opposite directions

(represented by w1 and w2).

3.5.1 The symmetric case

The problem of oscillatory (Hopf) bifurcation on a rhombic lattice has been considered

before, by Silber et al. (1992). Their work was motivated by studies of nematic liquid

crystals, but it is not restricted only to liquid crystals; rather, it can be applied to

any system possessing the same symmetries. (The problem has the symmetry group

T 2
⋊ D2, which consists of x and y translations plus the discrete symmetries of the
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rhombic lattice.)

Silber et al. (1992) obtained the following equations, truncated at third order, for

the evolution of the amplitudes z1, z2, w1 and w2:

ż1 = µz1 + (a|z1|2 + b|w2|2 + c|w1|2 + d|z2|2)z1 + fw2z2w̄1 (3.37)

ż2 = µz2 + (a|z2|2 + b|w1|2 + c|w2|2 + d|z1|2)z2 + fw1z1w̄2 (3.38)

ẇ1 = µw1 + (a|w1|2 + b|z2|2 + c|z1|2 + d|w2|2)w1 + fw2z2z̄1 (3.39)

ẇ2 = µw2 + (a|w2|2 + b|z1|2 + c|z2|2 + d|w1|2)w2 + fw1z1z̄2 (3.40)

The coefficient µ is the (complex) linear growth rate. The coefficients a, b, c, d and

f are also complex, and depend on the physical properties of the system; their values

cannot be determined by symmetry arguments alone.

These five undetermined complex coefficients are problematic, since they essentially

represent ten free parameters in the model. Fortunately, however, there is a limit in

which some of them can be eliminated; this occurs when the angle of obliquity of the

oblique rolls is small, i.e. the angle of the wavevectors k1 and k2 to the x–axis is small.

This situation occurs close to the so-called Lifshitz point, the point where oblique rolls

first appear (see previous chapter). In such circumstances an oblique roll can be repre-

sented as a slow modulation of a perpendicular roll.

Silber et al. (1992) performed a calculation using exactly this method, writing a

general superposition of leftward- and rightward-travelling rolls as

ǫ1/2[A(X, Y, T )ei(kx−ωt) +B(X, Y, T )ei(−kx−ωt)] + c.c. (3.41)

(to lowest order in ǫ), where the scalings are X = ǫ1/2x, Y = ǫ1/4y and T = ǫt, and

ǫ is a small parameter, proportional to the distance from the Hopf bifurcation. Here,

solutions independent of Y indicate perpendicular rolls, while solutions depending on

both X and Y indicate perpendicular rolls.

Using the symmetries of the problem, Silber et al. (1992) obtain the following evo-

lution equations for A and B:

∂A

∂T
= c

∂A

∂X
+ d

∂2A

∂X2
+ s

∂2A

∂Y 2
+ g

∂3A

∂X∂Y 2
− h

∂4A

∂Y 4
+ rA

+ α(|A|2 + |B|2)A+ β|A|2A (3.42)

∂B

∂T
= −c ∂B

∂X
+ d

∂2B

∂X2
+ s

∂2B

∂Y 2
− g

∂3B

∂X∂Y 2
− h

∂4B

∂Y 4
+ rB

+ α(|B|2 + |A|2)B + β|B|2B, (3.43)
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where c and r are real and all other coefficients are complex. The trivial solution

(A = B = 0) is unstable to perturbations with wavevector (Qc, Pc) if r > rc, where

Qc = 0, Pc = 0, rc = 0 if sr > 0

Qc =
giP

2
c

2dr
, P 2

c =
2drsr

g2
i − 4hrdr

, rc =
srP

2
c

2
< 0 if sr < 0

(3.44)

Therefore, we see that the Lifshitz point is represented by sr = 0. In other words, sr

depends on φ, with sr > 0 if φ is below the Lifshitz point, where perpendicular rolls are

found, while sr < 0 if φ is above the Lifshitz point, where oblique rolls are found. (Note

that we must assume 4hrdr > g2
i in order for the model to give oblique solutions.)

In the oblique case (sr < 0), we can relate the equations for A and B back to the

amplitudes z1, z2, w1 and w2 by making the following substitution:

A = eiQcX [z1(T )eiPcY + z2(T )e−iPcY ] (3.45)

B = e−iQcX [w2(T )eiPcY + w1(T )e−iPcY ] (3.46)

If higher order harmonics are neglected, then first order ODEs can be obtained for the

four complex amplitudes. These are of the form of (3.37)–(3.40) (as indeed they must

be by symmetry arguments), but this time we know the values of the coefficients a, b,

c, d and f (in terms of α and β), as follows:

d = 2a = 2(α+ β), c = f = b = α. (3.47)

It may seem that we are no better off, since we still do not know the values of α and

β. However, by using (3.47) we can in fact eliminate c, d, and f from (3.37)–(3.40) in

favour of a and b.

Therefore, by assuming that we are close to the Lifshitz point (φ only just above φc),

the problem is greatly simplified, since in this limit there are only two undetermined

coefficients instead of five.

3.5.2 Weakly broken symmetry

The problem considered so far contains a left-right reflection symmetry, which is valid

for a vertical magnetic field, but not for an inclined one. As usual, we will deal with

this by weakly breaking the symmetry; we write µ′ instead of µ in equations (3.39) and

(3.40), while leaving equations (3.37) and (3.38) unchanged. As before, the nonlinear

coefficients are not modified. If we assume that we are close to the Lifshitz point, so
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that (3.47) applies, then we are left with the following system of equations:

ż1 = µz1 + (a|z1|2 + b|w2|2 + b|w1|2 + 2a|z2|2)z1 + bw2z2w̄1 (3.48)

ż2 = µz2 + (a|z2|2 + b|w1|2 + b|w2|2 + 2a|z1|2)z2 + bw1z1w̄2 (3.49)

ẇ1 = µ′w1 + (a|w1|2 + b|z2|2 + b|z1|2 + 2a|w2|2)w1 + bw2z2z̄1 (3.50)

ẇ2 = µ′w2 + (a|w2|2 + b|z1|2 + b|z2|2 + 2a|w1|2)w2 + bw1z1z̄2 (3.51)

We now consider conditions under which the assumption of weakly broken symmetry

is valid. Note that we cannot use our previous tactic of assuming small φ; this is because

we have already assumed that we are near to the Lifshitz point, which corresponds

to taking φ just above the value where oblique rolls first appear, a value that is not

necessarily small.

Instead, we recall that with our choice of boundary conditions, there is a left-right

reflection symmetry in the problem when κ does not vary with depth, even when φ is

non-zero. Therefore, if we take δ to be some measure of |dκ/dz|, then the symmetry-

breaking will be proportional to δ. If we also take r to be the bifurcation parameter

(R− Rc)/Rc, then we have the following form for µ and µ′ (at lowest order):

µ = r − δ; µ′ = r + δ. (3.52)

The obvious scaling to take is r ∝ ǫ2, δ ∝ ǫ2, with |zj| and |wj| of order ǫ. All terms in

(3.48)–(3.51) are then of the same order, ǫ3. Symmetry breaking in the nonlinear terms

would only appear at higher orders, as required for consistency.

Note also that we can eliminate some of the parameters in these equations by making

suitable rescalings. Firstly, either µr or µ′

r may be scaled arbitrarily (by a positive factor),

which means that only the ratio µ′

r/µr is important. Secondly, either ar or br (but not

both) could be scaled to ±1 without loss of generality.

3.5.3 Results

We have looked for solutions to equations (3.48)–(3.51) in which the amplitudes remain

constant (although the phases will vary with time). The results are shown in Table 3.5.

Many of these branches were found analytically, with the remainder being computed

numerically auto. Details of the derivations leading to Table 3.5 are given in Appendix

C. The patterns are essentially the same as those found by Silber et al. (1992). The

differences are that the solutions are slightly distorted in some cases by the presence
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Name of solution Solutions for (z1, z2, w1, w2) Stability

conditions

rightward-travelling |z1|2 = −µr/ar ar < 0

rolls (TRoR)* d/dt(arg z1) = µi + ai|z1|2 µ′

r/µr < br/ar

z2 = w1 = w2 = 0

perpendicular travelling |z1|2 = (µ′

rbr − µrar)/(a
2
r − b2r ) ar < 0

rectangles (TRe⊥) |w2|2 = (µrbr − µ′

rar)/(a
2
r − b2r ) |ar| > |br|

d/dt(arg z1) = µi + ai|z1|2 + bi|w2|2

d/dt(argw2) = µ′

i + ai|w2|2 + bi|z1|2

z2 = w1 = 0

rightward-travelling |z1|2 = |z2|2 = µr/− 3ar Always

rectangles (TReR)* d/dt(arg z1) = d/dt(arg z2) = µi + 3ai|z1|2 unstable

w1 = w2 = 0

standing rolls (SRo) |z1|2 = (µ′

rbr − µrar)/(a
2
r − b2r ) ar < 0

|w1|2 = (µrbr − µ′

rar)/(a
2
r − b2r ) |ar| > |br|

d/dt(arg z1) = µi + ai|z1|2 + bi|w1|2 |a| > |b|
d/dt(argw1) = µ′

i + ai|w1|2 + bi|z1|2

standing rectangles (SRe) |z1| = |z2|, |w1| = |w2|,
arg z1 − arg z2 + argw1 − arg z2 = 0

alternating rolls (ARo) |z1| = |z2|, |w1| = |w2|,
arg z1 − arg z2 + argw1 − arg z2 = 0

*There also exist leftward-travelling versions of these solutions (TRoL and TReL), which

may be obtained by exchanging z1 ↔ z2, w1 ↔ w2 and µ↔ µ′.

Table 3.5: The solutions found to equations (3.48)–(3.51), and their stabil-

ity conditions (all of the listed conditions must be satisfied for the solution to

be stable). Note that the SRe and ARo solutions were computed numerically

with auto, hence the precise forms of the solutions and stability conditions

are not listed in the table.
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of asymmetry, and that there are sometimes two copies of each solution, one travelling

left and one travelling right (whereas previously, these would have been related by

symmetry). These separate left-going and right-going branches have been indicated by

adding a superscript L or R where appropriate.

Figure 3.19 shows some of these patterns in graphical form. (We have taken the

wavevectors kj to be at an angle of 15◦ to the x-axis in this picture.) The figure shows

patterns both in the symmetric case (with all amplitudes equal) and in an asymmetric

case (where the |wj| have been taken to be 40% larger than the |zj |). The first row shows

patterns which travel uniformly with time; TRo travel either left or right, while TRe⊥

travel up or down (i.e. in the y-direction). The rest of the figure shows ARo, which

have a more complicated time evolution. The ARo are essentially the same as the WR1

from the oscillatory hexagonal model (the only difference is that the angle between the

constituent wavevectors is different).

Figure 3.20 shows our results for the existence and stability of the various solution

branches in the different regions of the µr-µ
′

r plane. Note that only the ratio µ′

r/µr is

important, so the regions are always sectors emanating from the origin, which have been

represented by arcs on the diagrams. A solid (dashed) arc indicates the existence of a

stable (unstable) solution. There are three cases (a)–(c) depending on ar and br: case (a)

applies when |br| < |ar|, case (b) when |ar| < |br| < 3|ar|, and case (c) when |br| > 3|ar|.
In case (b), although the existence region of ARo can be calculated analytically, the

stability region must be found numerically (it depends on all parameters including ai

and bi). In particular we cannot say explicitly whether the stability boundary will be

inside or outside the sector AOB (this is represented by diagrams (b)(i) and (b)(ii)).

Finally diagram (d) is not a separate case but rather shows some additional solution

branches, which exist in all three cases, but are always unstable.

The diagram can be interpreted by observing that if κ is constant (the symmetric

case) then we are on the forty-five degree line µr = µ′

r. Increasing the Rayleigh number

corresponds to moving towards the top right. If we increase the variability of κ we

move towards the top left, if κ decreases with depth, or the bottom right, if κ increases

downward. (Recall that in our model, κ decreased downward so µ′

r > µr is the relevant

part of the diagram.) For example in case (a) we would see TRe⊥ and SRo for weakly

varying κ, while for more strongly varying κ we would see only leftward-travelling rolls.

In addition to the solutions of Table 3.5, one or two other solution branches were

found with auto. These had all four amplitudes (|z1|, |z2|, |w1| and |w2|) unequal
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TRo TRo TRe⊥ (symmetric) TRe⊥ (asym.)

ARo

(sym.)

t = 0 t = 1/16 t = 2/16 t = 3/16

t = 4/16 t = 5/16 t = 6/16 t = 7/16

ARo

(asym.)

t = 0 t = 1/16 t = 2/16 t = 3/16

t = 4/16 t = 5/16 t = 6/16 t = 7/16

Figure 3.19: Patterns in the rhombic model.
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Figure 3.20: Regions of existence and stability of the various patterns in

the µr–µ
′

r plane. Solid (dashed) curves indicate stable (unstable) solutions.

See text for further explanation.
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and non-zero. For example, solution branches of this kind were found that connected

together the (unstable) standing rectangle branch and the travelling roll solutions. In

some cases there were even solutions in which the amplitudes |zj| and |wj| were periodic

functions of time. However, all of these more complicated solution branches were found

to be unstable (at least for the cases we considered), so they are not discussed further

here.

3.5.4 Comparison with results below the Lifshitz point

The results above apply to the oblique roll regime (above the Lifshitz point). However,

the model (3.42)–(3.43) also applies below the Lifshitz point, i.e. when φ < φ0, if we

choose sr > 0 instead of sr < 0. It is instructive to compare the results in the two

different cases, since this illustrates how the solutions will change as φ is increased

through φ0, from the perpendicular into the oblique roll regime. (See also Figure 9 of

Silber et al. 1992.)

In the ‘perpendicular’ regime (sr > 0) we have Qc = Pc = 0 (equation 3.44), so there

are only two critical modes, representing left-going and right-going perpendicular rolls.

We can obtain amplitude equations for these modes simply by setting z1 = A, w1 = B

in (3.42)–(3.43), and dropping all spatial derivative terms, which gives:

ż1 = µz1 + (a|z1|2 + b|w1|2)z1 (3.53)

ẇ1 = µ′w1 + (a|w1|2 + b|z1|2)w1 (3.54)

(here we have also weakly broken the left-right symmetry). Note that these equations

can alternatively be derived simply by setting z2 and w2 to zero in (3.48)–(3.51).

These equations have two solutions, corresponding to either travelling or standing

rolls. In fact we can quite easily relate the existence and stability results for these

solutions to the corresponding results in the oblique roll regime. We find that TRo exist

and are stable below the Lifshitz point if and only if they exist and are stable above the

Lifshitz point; in other words the stability conditions for TRo do not change between

the perpendicular and oblique regimes. For the SRo, we find that the stability condition

for SRo below the Lifshitz point corresponds to the stability condition for TRe⊥ above

the Lifshitz point; in other words, if TRe⊥ are stable in the oblique regime then SRo

will be stable in the perpendicular regime (and vice versa). This is all summarized in

Figure 3.21 which shows the equivalent of Figure 3.20 for the perpendicular case.
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TRo
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SRo

(b)

B

A

TRo

TRo
L

R

SRo
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Figure 3.21: The equivalent of Figure 3.20, for the ‘perpendicular’ regime

(φ < φ0, sr > 0) instead of the ‘oblique’ regime (φ > φ0, sr < 0). Note that

in this case, there are only two possible solutions: perpendicular travelling

rolls (TRo) or perpendicular standing rolls (SRo). The labels (a), (b), (c)

and the lines A, B have the same meaning as in Figure 3.20.

We note therefore that one of the following would be observed if φ was set to a value

just below the Lifshitz point, and then increased to a value just above it:

• If the symmetry is very strongly broken, then only travelling rolls would be stable.

These will be perpendicular rolls below the Lifshitz point, or oblique rolls above

it.

• If the symmetry is not too strongly broken, and |br| > |ar| (corresponding to cases

(b) and (c) on Figures 3.20 and 3.21), then we will see again see travelling rolls

on both sides of the Lifshitz point; we might also see alternating rolls above the

Lifshitz point (depending on the values of µ, µ′, a and b).

• If the symmetry is not too strongly broken, and |br| < |ar| (corresponding to case

(a) on Figures 3.20 and 3.21), then we will see perpendicular standing rolls below

the Lifshitz point, and the TRe⊥ solution (see Figure 3.19) above it. If |a| > |b|,
then we will also see oblique standing rolls above the Lifshitz point.
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3.5.5 A calculation of the coefficients a and b

In order to determine which of the above cases occur in any given problem, one needs

to know the values of the coefficients a and b. These can be calculated by means of a

perturbation analysis of the original equations about the equilibrium solution. In fact,

we can calculate these coefficients for the symmetric case (µ = µ′) if we want to, since

their values do not change when the symmetry is weakly broken – the same values will

apply to both the symmetric and asymmetric cases.

The symmetric case comes about when dκ/dz → 0, i.e. when κ is uniform. Our

assumptions also require us to choose φ at (or just above) the Lifshitz point. It turns

out that as dκ/dz → 0, the value of φ corresponding to the Lifshitz point tends to zero

as well (see Figure 2.13 on page 61). In other words, if we let dκ/dz → 0 with φ fixed

just above the Lifshitz point, we will end up with φ → 0 as well; therefore, it appears

that the limit we require is that of a Boussinesq fluid (uniform κ) in a vertical field.

Matthews and Rucklidge (1993) have performed a weakly nonlinear calculation in

this limit. They actually use different magnetic boundary conditions to our model – they

have the magnetic field constrained to be vertical at top and bottom (so Bx = By = 0)

while we have used a potential field at one boundary and a tied field at the other.

Therefore the results will not apply directly to our model, but should still give a useful

qualitative guide to what happens.

The calculation of Matthews and Rucklidge (1993) considered only the two-dimen-

sional case. We can simulate this by setting z2 = w2 = 0 (cf. equations 3.53–3.54), and

also µ = µ′, obtaining the following equations, equivalent to theirs:

ż1 = µz1 + (a|z1|2 + b|w1|2)z1 (3.55)

ẇ1 = µw1 + (a|w1|2 + b|z1|2)w1 (3.56)

except that they now give explicit expressions for a and b (γ and δ in their notation).

Note that since, near the Lifshitz point, there are only two coefficients a and b to be

determined (c, d and f having been eliminated using equation 3.47), it is enough to

consider only this two-dimensional problem.

These values can then be used to determine which of cases (a), (b) or (c) occurs as

a function of the parameters Q, ζ and σ of the original PDEs. This has been done in

Figure 3.22. Notice that case (c) does not in fact occur for this problem. The difference

between (a)* and (a) is that SRo are stable in the former (|a| being greater than |b| there)

but unstable in the latter. The shaded region to the left of the diagram corresponds to
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Figure 3.22: Diagrams showing which of the cases (a), (b) or (c) from

Figure 3.20 occurs as a function of Q, ζ and σ (as indicated by the calculation

of section 3.5.5). Note that in case (a), SRo may or may not be stable; the

regions where SRo are stable have been marked with an asterisk. In the

shaded areas, convection is steady at onset and the model does not apply.

The four diagrams correspond to different values of ζ as follows. A: ζ = 0.9;

B: ζ = 0.5; C: ζ = 0.1; D: ζ = 0.02.
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parameter values in which convection is steady at onset (due to Q being too small) and

hence the analysis does not apply here.

3.6 Conclusions

In this chapter, we have moved on from linearized computations and looked at some

simplified nonlinear models. These can shed some light on what happens when the

linear theory predicts several competing modes with similar growth rates. The great

advantage of these models is that since they only use very general symmetry arguments,

the results can be applied to a wide variety of situations. (For example, the results would

in principle apply equally well to Boussinesq, anelastic, or compressible problems.) Their

main disadvantage is that they apply only to the weakly nonlinear regime.

The method used was to select a lattice on which the solutions were to be doubly

periodic. This restriction was essential for technical reasons, although it does limit

the class of solutions that can be obtained. However, (approximately) doubly periodic

patterns are frequently found experimentally or in numerical simulations, and therefore

the method is useful in practice. Another limitation is that when we check for stability

or instability of a pattern, we are in fact only checking for instability with respect to

perturbations that are doubly periodic on the given lattice – for example, instabilities

leading to long-wavelength modulations of the patterns will not be found by this method.

Our models were divided into two cases: the ‘steady’ case (for large ζ) and the

‘oscillatory’ case (for small ζ). We will describe each of these in turn.

The steady case is certainly the simpler of the two. Here, we investigated the problem

on a hexagonal lattice (section 3.3). The hexagonal lattice is useful because it allows

the competition between rolls and hexagons to be investigated; we would expect to see

hexagonal patterns for small tilt angles φ (because of the lack of up-down symmetry),

but for larger tilt angles we would expect to see parallel rolls (Danielson, 1961). The

steady hexagonal model allows this transition to be investigated in more detail.

The results show that when φ = 0, the convection takes the form of steady hexagons

(Figure 3.6, left-hand panel). As φ increases, this pattern persists, although it becomes

distorted in appearance (due to asymmetry between the three modes making up the

hexagons; Figure 3.6, second and third panels). The hexagons also drift with a speed

which is initially proportional to the tilt angle; the direction of travel was leftward in

our model (see previous chapter), but this is model-dependent. When φ is increased
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further, there is a transition to steady parallel rolls; in many cases this transition is

associated with hysteresis.

The oscillatory models showed slightly more complicated results. In this case we

investigated two different models: one on a rhombic lattice (section 3.5), and one on a

hexagonal lattice (section 3.4).

The oscillatory rhombic model included four modes, and was for simplicity restricted

to values of φ close to the Lifshitz point. If the amount of symmetry breaking was

sufficiently weak, then there were essentially two cases. In the first case, standing rolls

would be found below the Lifshitz point, while travelling rectangles (travelling in a

direction perpendicular to the tilt), and possibly also standing rolls, would be found

above it. In the second case, travelling rolls would be found below the Lifshitz point,

while both travelling and (possibly) alternating rolls would be found above it.

The oscillatory hexagonal model was appropriate for small tilt angles, and had some-

what more complicated results (Figure 3.17). It is difficult to draw any conclusions

relevant to sunspots from these results. We can however observe that there is a wide

variety of interesting behaviour that can occur in this regime, even before considering

fully nonlinear effects.

Note that in reality, the distinction between either a hexagonal or a rhombic lattice

is somewhat artificial; modes from both lattices (plus an infinite number of other modes)

would be present in the full problem. There is no real answer to this, but we can state

that the hexagonal model is more appropriate to the perpendicular roll regime in the

linear theory, occurring for small φ, while the rhombic model is more appropriate to the

vicinity of the Lifshitz point, which can be found at larger values of φ. (Unfortunately,

since we have to choose either one lattice or the other, we cannot really investigate the

transition between these two regimes using these methods, except in the limited way

that was discussed in section 3.5.4.)

We can now ask which of the two types of model – steady or oscillatory – is more

relevant to sunspots. To answer this, we must consider the value of ζ in the solar surface

layers. In fact this value varies with depth due to ionization effects; ζ < 1 for depths less

than 2000 km, but for depths of around 2000 to 20000 km there is a layer in which ζ > 1

(Meyer et al., 1974). Therefore, if the surface convective features observed in sunspots

are fairly shallow (depth less than about 2000 km), the oscillatory model is appropriate.

If their depth is much greater, then the steady model would be appropriate.

There is also another possibility: a combination of both the steady and the oscillatory
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Figure 3.23: Bifurcation diagrams from the steady hexagonal model (with

θ = 30◦), showing a case with hysteresis (left-hand picture) and one without

(right-hand picture).

behaviour could occur simultaneously. In our models, we get either one or the other,

because we consider only the situation near onset; for higher Rayleigh numbers, more

complicated behaviour can occur. For example, the simulations of Weiss et al. (1990,

1996), in which ζ is chosen to vary from 0.2 at the top of the layer to 2.2 at the

base, show that convection is steady near onset, but as the Rayleigh number increases,

a secondary bifurcation occurs, leading to a new solution. This solution consists of

persistent overturning convection near the base of the layer, coupled to an oscillating

pattern near the surface. (The models of this chapter cannot directly describe solutions

of this kind; they would appear as secondary branches bifurcating from the solutions of

our steady hexagonal model.)

Perhaps one of the most interesting features found in our models is the presence

of hysteresis as φ is varied. This is seen in both the steady and oscillatory cases (al-

though we have only investigated the former in detail). Hysteresis is usually associated

with sharp transitions between different patterns, and might therefore be part of the

explanation for the sharp transition between the umbra and penumbra of a sunspot.

The hysteresis is illustrated in Figure 3.23 which shows bifurcation diagrams from

the steady hexagonal model in two cases, one with and one without hysteresis. Pictorial

representations of the stable solutions at various points have also been added.

Consider what would happen if φ was allowed to vary smoothly with position, as a

crude way of modelling a sunspot. In a case without hysteresis, the convection pattern

would vary from regular hexagons in an area with a vertical field, to parallel rolls in
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areas of large φ (representing near-horizontal fields), with a smoothly varying pattern

in between; this is illustrated by the right-hand diagram. By contrast, in a case with

hysteresis, a rather more abrupt transition would be expected between the hexagon and

roll regions (left-hand picture).

In the latter case, it is tempting to relate the hexagons to the umbra, and the rolls

to the penumbra.2 Of course, such a model would be highly simplified and idealized,

and so could not be compared directly with observations. However, the mechanism that

it represents is a very general one and we can reasonably expect it to apply to more

complicated models as well (in addition to whatever else might be happening in those

models).

The idea of hysteresis in magnetoconvection has also been employed by previous

authors. For example, Rucklidge et al. (1995) suggest the presence of hysteresis as part

of their explanation of the abrupt formation of penumbrae. Thomas and Weiss (2004)

conjecture that hysteresis may be caused by the phenomenon of ‘flux pumping’. Our

work suggests that hysteresis may also occur naturally as an intrinsic part of magneto-

convection in inclined fields.

We also note that a similar hysteresis phenomenon was found in the asymptotic

calculation of Julien et al. (2000, 2003), although their model uses somewhat different

assumptions to ours. (Both our model and theirs are highly idealized, albeit in different

ways.) Moreover, they find a second hysteretic transition occurring for larger φ, which

they suggest is a possible explanation of the differing properties of bright and dark

filaments. This second transition is not seen in our model, but since we assume small φ

we would not expect to see any effects associated with more strongly inclined fields.

In the next chapter we will describe how the steady hexagonal model of section 3.3

can be modified to include a tilt angle φ that is a function of x. This will allow us to

investigate the hysteresis phenomenon discussed above in more detail.

2The rolls do not capture the complex, filamentary structure found in real penumbrae, but we might

suppose that such structure develops as a result of an instability starting from this roll state. However,

such instabilities are beyond the scope of this weakly nonlinear theory.
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