
Chapter 2

Linear theory

2.1 Introduction

In this chapter, we will begin our investigations of magnetoconvection in tilted fields by

studying the linear stability theory for a simple model problem. Our philosophy will

be to create a simplified, idealized model rather than trying to include all the details

of the physics. This will allow us to learn something about the problem without over-

complicating the calculations or having to do time-consuming numerical simulations.

Once we understand the basics, we will then be in a position, in later chapters, to move

on to more complicated (and more realistic) models.

With this in mind, we will look at Boussinesq convection in a layer containing a

uniform inclined magnetic field. Unlike previous work (Matthews et al., 1992) we do not

consider fully compressible convection, although it will turn out that many of the features

of the compressible problem are captured in our model. We do, however, consider

fully three-dimensional solutions; the work of Matthews et al. (1992) was restricted to

two dimensions. This work will give us a rough idea what happens near the onset of

convection, and will provide a good starting point for the weakly nonlinear models of

the next chapter.

We will first of all, in section 2.2, describe in detail our problem and our method of

solving it. In section 2.3 we review what happens when the field is vertical, and in section

2.4 we show how symmetry arguments may be used to ascertain what happens when

the field is tilted. Finally, we present our results in section 2.5, and give conclusions in

section 2.6.
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Figure 2.1: Diagram showing the system under investigation.

2.2 Problem setup

The problem that we will investigate consists of an infinite horizontal plane layer of

Boussinesq fluid, heated from below, and permeated by an inclined magnetic field tilted

at an angle φ to the vertical. Refer to Figure 2.1.

The equations of motion for the layer, in non-dimensionalized form, are as follows:

the Navier–Stokes equation

1

σ

(

∂u

∂t
+ u · ∇u

)

= −∇Π +
d3

νκ̄
g − RTez + ζQB · ∇B + ∇2u, (2.1)

the temperature equation (where we assume that radiative transfer can be treated in

the diffusive approximation)

∂T

∂t
+ u · ∇T = ∇ · (κ̂∇T ), (2.2)

and the induction equation

∂B

∂t
+ u · ∇B = B · ∇u + ζ∇2B, (2.3)

together with

∇ · u = ∇ · B = 0, (2.4)

where u is the fluid velocity, B is the magnetic field, T is the temperature, and Π =

p+B2/2µ0 is the total pressure (gas pressure plus magnetic pressure). In these equations
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we have scaled all lengths by the layer depth d, times by the thermal diffusion timescale

d2/κ̄, magnetic fields by the imposed field strength B0, and temperatures by the imposed

temperature difference ∆T . This leaves the following dimensionless parameters: the

Rayleigh number R, the Chandrasekhar number Q, the Prandtl number σ and the ratio

ζ of magnetic to thermal diffusivity, given by

R =
αT ∆Td3|g|

νκ̄
, Q =

B2
0d

2

µ0ρνη
, σ =

ν

κ̄
, ζ =

η

κ̄
. (2.5)

Here αT is the coefficient of thermal expansion, g is the acceleration due to gravity, ν is

the fluid viscosity, η the magnetic diffusivity, µ0 the permeability, and ρ the density. The

thermal diffusivity of the fluid is denoted by κ; the quantity κ̄ in the above equations

represents the value of κ at mid-layer (z = 1/2). Initially we will assume that κ is a

constant (so that κ = κ̄ everywhere), but later on we will allow for the possibility of a

varying thermal diffusivity with depth. In this case we write κ as

κ = κ̂(z)κ̄, (2.6)

where κ̂ is a dimensionless function of depth. (For consistency, κ̂ must satisfy κ̂(1/2) =

1.)

2.2.1 Boundary conditions

We must also specify boundary conditions for our layer. We will assume that our layer

is of infinite extent in the horizontal, so we only need to specify boundary conditions

for the top and bottom surfaces. We take these surfaces to be impenetrable and stress

free, so that

uz =
∂ux

∂z
=

∂uy

∂z
= 0 (2.7)

at z = 0 and at z = 1. We also take the temperature to be fixed at top and bottom,

which in the non-dimensional units adopted, reduces to

T = 0 at z = 0; T = 1 at z = 1. (2.8)

This leaves the question of what to do with the magnetic boundary conditions.

There are actually several plausible choices. The simplest would be to fix the angle of

the magnetic field at the top and bottom surfaces, so that

Bx = −Bz tan φ; By = 0 (2.9)

39



on the boundary. However this is not physically realistic and can in some circumstances

lead to energy being injected into the system from the boundaries (N.Roxburgh, private

communication).

Instead, there are two physically motivated boundary conditions that we could use:

we could take the boundary to be either a perfect electrical insulator or a perfect elec-

trical conductor. The former is equivalent to matching to a potential field outside the

layer, while the latter is equivalent to ‘tying’ the field lines (and in 2D it is also equiv-

alent to holding the vector potential fixed at its initial value). We derive equations for

these conditions in Appendix A. Although still somewhat idealized, these conditions

are slightly more realistic than simply fixing the tilt angle.

For example, in the Sun we can to a first approximation assume that there is a

vacuum (or at least, a current-free region) above the surface, so it is reasonable to match

our solution onto a potential field above the top of the layer. We take the potential field

to be inclined at an angle φ as z → −∞ (which is how the inclination of the field is

controlled).

Below the layer, matching to a potential field is inappropriate. Instead, we take

a perfectly conducting lower boundary, which ‘ties’ the footpoints of the field lines in

place. (This seems reasonable if we think of the field in a sunspot as being anchored to

a flux tube which is deeply rooted near the base of the convection zone.)

2.2.2 Basic state and linearization

The equations given above have a trivial solution in which the fluid velocity is zero and

the magnetic field is uniform: B = B0 ≡ (− sin φ, 0, cosφ) in non-dimensional units.

The temperature profile is linear if κ is uniform; if κ varies with depth, it is instead

given by

T = T0(z) ≡ C

∫

1

κ̂
dz + D (2.10)

where C and D are constants of integration, chosen to ensure that the boundary condi-

tions (T = 0 at z = 0, T = 1 at z = 1) are satisfied.

We now wish to analyse the stability of this basic state. The problem is separable
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in x, y and t, so we introduce perturbations of the form

u = u′(z)eik·x+st + c.c. (2.11)

B = B0 + B′(z)eik·x+st + c.c. (2.12)

T = T0(z) + T ′(z)eik·x+st + c.c. (2.13)

Π = Π0 + Π′(z)eik·x+st + c.c. (2.14)

(where ‘c.c.’ stands for ‘complex conjugate’). The vector k is the wavevector of the

disturbance, which we also write in components as k = (kx, ky, 0).

Choosing the perturbations in this form essentially corresponds to considering one

Fourier mode at a time. (Obviously in linear theory different Fourier modes will just

superpose, so it is valid to consider them each individually.)

After linearizing in the perturbations, and writing the equations out in components,

the following eigenvalue problem for the growth rate s is obtained:

s

σ
u′

x = −ikxΠ
′ + ζQ

(

−ikx sin φB′

x + cos φ
dB′

x

dz

)

− (k2
x + k2

y)u
′

x +
d2u′

x

dz2
(2.15)

s

σ
u′

y = −ikyΠ
′ + ζQ

(

−ikx sin φB′

y + cos φ
dB′

y

dz

)

− (k2
x + k2

y)u
′

y +
d2u′

y

dz2
(2.16)

s

σ
u′

z = −
dΠ′

dz
+ ζQ

(

−ikx sin φB′

z + cos φ
dB′

z

dz

)

− (k2
x + k2

y)u
′

z +
d2u′

z

dz2
− RT ′ (2.17)

sT ′ +
C

κ̂
u′

z = −κ̂(k2
x + k2

y)T
′ + κ̂

d2T ′

dz2
+

dκ̂

dz

dT ′

dz
(2.18)

sB′

x = −ikx sin φu′

x + cos φ
du′

x

dz
− ζ(k2

x + k2
y)B

′

x + ζ
d2B′

x

dz2
(2.19)

sB′

y = −ikx sin φu′

y + cos φ
du′

y

dz
− ζ(k2

x + k2
y)B

′

y + ζ
d2B′

y

dz2
(2.20)

sB′

z = −ikx sin φu′

z + cos φ
du′

z

dz
− ζ(k2

x + k2
y)B

′

z + ζ
d2B′

z

dz2
(2.21)

ikxu
′

x + ikyu
′

y +
du′

z

dz
= 0 (2.22)

ikxB
′

x + ikyB
′

y +
dB′

z

dz
= 0 (2.23)

subject to

u′

z =
du′

x

dz
=

du′

y

dz
= T ′ = 0 (2.24)

at both top and bottom.
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If the fixed-angle boundary condition is being used for the magnetic field, then the

relevant linearized boundary condition is

B′

x = −B′

z tanφ (2.25)

B′

y = 0, (2.26)

to be applied at z = 0 and z = 1.

The potential field boundary condition (at z = 0) is

B′

x =
ikx

√

k2
x + k2

y

B′

z (2.27)

B′

y =
iky

√

k2
x + k2

y

B′

z. (2.28)

The (linearized) tied field boundary condition (at z = 1) is

ζ
dB′

x

dz
+ u′

x cos φ − ζ ikxB
′

z = 0 (2.29)

ζ
dB′

y

dz
+ u′

y cos φ − ζ ikyB
′

z = 0 (2.30)

These equations were solved numerically using the program nrk, an implementation

of the Newton-Raphson-Kantorovich method for solving boundary value problems (Cash

and Moore, 1980). The eigenvalue s can be found in terms of the various parameters.

Alternatively the critical Rayleigh number Rc for the onset of instability (at which

Re s = 0) can be calculated.

2.3 The vertical field case

Before moving on to inclined fields, it is important to understand the case of a vertical

field. Here, the layer is isotropic (that is to say, there is rotational symmetry about the

z-axis), so without loss of generality we can consider only the two-dimensional problem,

taking ky = 0. (We also take kx to be positive, again without loss of generality.) The

isotropy implies a symmetry between leftward- and rightward-travelling waves, which

means that the eigenvalues s will always be either purely real (representing steady

convection), or come in complex conjugate pairs (representing waves travelling in either

direction).

In the Boussinesq case, this problem has been investigated by Chandrasekhar (1961)

and Proctor and Weiss (1982). There are two qualitatively different types of behaviour,
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Figure 2.2: The paths of the eigenvalues through the complex plane as R

is varied, when the field is vertical. (a) Oscillatory case (small ζ); (b) steady

case (large ζ). (After Proctor and Weiss 1982, figure 6.)

depending on ζ . The first is the ‘oscillatory’ case which occurs for ζ < 1 and Q suffi-

ciently large. The second type of behaviour is the ‘steady’ case and this occurs when

ζ ≥ 1 or when Q is small enough.

Note that these conditions apply for uniform κ; when κ is non-uniform, there is a

slight complication, since the ratio η/κ is now effectively a function of depth. The cut-off

between the two types of behaviour will no longer be exactly at ζ = 1; however, we can

still say that the oscillatory case occurs for ζ small enough, and the steady case occurs

for ζ large enough.

Figure 2.2 shows how the eigenvalues s move through the complex plane as R is

increased, in both the oscillatory and steady cases. Note that Re s corresponds to the

growth rate (positive indicating instability), while Im s gives the oscillation frequency

of the mode. Since we are taking kx to be positive, we have that Im s < 0 represents a

rightward-travelling wave, Im s > 0 represents a leftward-travelling wave, and Im s = 0

indicates a steady mode.

Figure 2.2(a) shows the oscillatory case; various special Rayleigh numbers are marked.

R = R(o) corresponds to a Hopf bifurcation, where the static state loses stability to oscil-

latory convection. R = R(i) represents a transition from oscillatory to steady convection.

R = R(e) is where one of the eigenvalues becomes negative again, but this has no physical

significance since we are still unstable to the other (positive) eigenvalue.
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The steady case is illustrated in Figure 2.2(b). There is now a bifurcation to steady

convection at R = R(e), and this time it is R(i) that has no physical significance. Note

that the eigenvalues in the right half-plane never leave the real axis, so there is no

instability to travelling waves this time.

2.4 Symmetry considerations for inclined fields

We can gain some insight into the inclined field case (φ > 0) by considering the sym-

metries involved. One important symmetry has already been mentioned, and that is

the rotational symmetry present when the field is vertical. When the field is inclined,

this symmetry will be broken, and rolls of different orientations will have different prop-

erties. We can no longer take ky = 0 and must instead consider the wavenumber to

be a two-dimensional vector. Nevertheless, it will be helpful to first consider the ‘two-

dimensional’ case (with ky = 0), in order to explain the various ideas in a simpler setting,

before moving on to fully three-dimensional solutions.

2.4.1 General considerations in the two-dimensional case (ky =

0)

Here, we have seen that the isotropy (present for vertical fields) manifests itself as

a symmetry between left- and right-going waves, meaning that the eigenvalues come

in complex conjugate pairs. When the field is tilted, one would expect this left-right

symmetry to be broken. However, for Boussinesq convection this is not the case; this is

because there is actually an extra symmetry in the problem.

This extra symmetry is an up-down reflection symmetry, inherent in the Boussinesq

equations. In our problem, we need to clarify what this means; we are not talking about

a simple reflection z → −z, since this would reverse the tilt of the field lines. Instead

there is a symmetry π consisting of a reflection in the mid-plane (z → −z) followed by

another reflection in the y–z plane (x → −x). (π is equivalent to a 180◦ rotation, in

effect turning the layer ‘upside-down’.)

This symmetry transforms a left-going wave into a right-going wave, and vice versa.

In other words, the presence of an up-down symmetry also implies that there is a sym-

metry between left-going and right-going waves, even when the field is tilted.

Contrast this to compressible convection, in which there is no up-down symmetry,

44



Re s

Im s
(a)

Re s

Im s
(b)

Figure 2.3: Perturbations to Figure 2.2(a) after breaking the left-right

symmetry. (a) The general case. (b) The case where the up-down symmetry

is broken only by a change in the magnetic boundary conditions between top

and bottom; in this case, the curve must pass through the origin.

and therefore tilting the field would break the symmetry between left-going and right-

going waves. Since we are trying to model sunspots, where compressibility is important,

it is clearly unsatisfactory that the left-right symmetry is not broken in our model.

We are therefore motivated to look for ways in which this symmetry can be broken

within our Boussinesq model. First of all, note that one way of achieving this would

be to choose different boundary conditions at the top and bottom boundaries. In fact,

we have already suggested that an appropriate choice of magnetic boundary conditions

would be to use an insulating upper boundary, but a conducting lower boundary. This

in itself should be sufficient to break the up-down symmetry.

We will see later on, however, that the approach of breaking the symmetry purely by

changing the magnetic boundary conditions is not entirely satisfactory. An alternative

method is to allow the thermal diffusivity κ to vary with depth – a possibility that we

allowed for when we formulated the equations. This approach allows us to break the

symmetry in a somewhat more fundamental way than simply by tweaking the boundary

conditions.

We now turn to the changes that we would expect to see in Figure 2.2 when the field

is tilted (assuming that the up-down symmetry in the problem has indeed been broken).

The main change is that we would expect either left-going waves to be preferred over

right-going ones, or vice versa (we cannot say in advance which way around it will be).

45



We now consider how this works in more detail, starting with the oscillatory case (low

ζ) and then moving on to the steady case (high ζ).

2.4.2 The oscillatory case (small ζ)

Here, we wish to describe how Figure 2.2(a), which applies to oscillatory convection

when φ = 0, will change when φ is increased above zero. Here we are considering

the case where the left-right symmetry has been broken (as discussed above); suppose

that it is the left-going waves that are preferred. This would shift the top half of the

diagram (representing left-going waves) to the right (i.e. becoming more unstable), while

the bottom half would be shifted to the left. Thus, we might expect to see a picture

something like Figure 2.3(a). (The other possibility, in which right-going waves are

preferred, would correspond to a reflection of this figure about the real axis.)

For this result, however, it is important to consider how the symmetry π was broken.

If this was done solely by changing the magnetic boundary conditions at top and bottom,

then we must consider a result of Roberts (1967, p.200), who has shown that when

s = 0, the magnetic boundary conditions actually have no effect on the problem. That

is, if s = 0 at R = R(e) for the symmetric problem, then s will still be zero, at the

same Rayleigh number, when the magnetic boundary conditions are changed. This is

equivalent to saying that the locus of our eigenvalues must still pass through the origin,

at the same value of R – although there is nothing to stop it from being perturbed from

its original path elsewhere (where s 6= 0). Figure 2.3(b) shows the revised picture.

Note that Roberts (1967) only derives this result for the two-dimensional case, but

it is a simple matter to extend it to the three-dimensional case (i.e. when ky 6= 0).

Following Proctor and Weiss (1982), section 5, we can write the linearized equations

in a poloidal-toroidal form. First of all, take the curl of the momentum and induction

equations to obtain:

1

σ

∂ω

∂t
= −R(∇T ′) ∧ ez + ζQB0 · ∇j ′ + ∇2ω (2.31)

∂j ′

∂t
= B0 · ∇ω + ζ∇2j ′ (2.32)

where ω = ∇ ∧ u and j ′ = ∇∧ B′.

The z-components of (2.31) and (2.32) decouple, giving a pair of equations for ωz
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and j′z, as follows:

1

σ

∂ωz

∂t
= ζQB0 · ∇j′z + ∇2ωz (2.33)

∂j′z
∂t

= B0 · ∇ωz + ζ∇2j′z . (2.34)

(2.33) and (2.34) are the equations for damped Alfvén waves travelling along the B0

direction. Since there is no driving term, the solutions will decay exponentially and j′z

and ωz may be set to zero.

Because ∇·u = ∇·B′ = 0, we can now introduce a poloidal-toroidal representation

for both u and B′. In fact, since ωz and j′z are both zero, it follows that the toroidal

component will be zero and that u and B′ will both be purely poloidal. We write them

as

u = ∇ ∧ (∇∧ (Fez)) (2.35)

B′ = ∇ ∧ (∇∧ (Hez)). (2.36)

We can then rewrite the linearized momentum, temperature and induction equations in

terms of F and H :

1

σ

∂

∂t
(∇2F ) = RT ′ + ζQ(B0 · ∇)∇2H + ∇4F (2.37)

∂T ′

∂t
− (∇2

HF )

(

∂T ′

∂z

)

=
dκ̂

dz

dT0

dz
+ κ̂∇2T ′ (2.38)

∂H

∂t
= B0 · ∇F + ζ∇2H. (2.39)

Note that (2.37) couples to (2.39) only through ∇2H , while (2.38) does not contain H

at all. If we look for steady solutions (in which ∂/∂t ≡ 0), we have from (2.39) that

∇2H = −
1

ζ
B0 · ∇F (2.40)

and we can substitute this into (2.37). Note that (2.37) and (2.38) now decouple com-

pletely from (2.39). We can solve the former for the temperature and velocity eigenfunc-

tions, independently of the magnetic boundary conditions, thus obtaining our critical

Rayleigh number R (when s = 0); we can then substitute these solutions into (2.39)

and find the magnetic field separately. Therefore, we have proved the above claim that

when s = 0, the magnetic boundary conditions do not influence the value of the critical

Rayleigh number.
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Figure 2.4: Definitions of ‘parallel’, ‘perpendicular’ and ‘oblique’ rolls. The

cylinders in this picture represent the convection rolls. The magnetic field

(which is not drawn) lies in the x-z plane.

The three-dimensional case (ky 6= 0)

We now move on to the general case where ky can be non-zero. To make things clearer

we will introduce an angle α describing the orientation of the wavevector k with respect

to the x-axis, defined as follows:

kx = k cos α, ky = k sin α. (2.41)

The case α = 0 (corresponding to the two-dimensional problem) will be called the

‘perpendicular’ case (since the roll axes are perpendicular to the plane of the tilt), and

α = 90◦ will be referred to as the ‘parallel’ case. There are also ‘oblique’ rolls (with

0◦ < α < 90◦). These possibilities are illustrated in Figure 2.4.

Rolls of each of these types will have different properties, because of the anisotropy

(if φ > 0). As was shown by Matthews et al. (1992), when φ is small these modes can

be analysed using simple symmetry arguments. We imagine that, for given parameters,

we have calculated the critical Rayleigh numbers (minimized over wavenumber) for a

vertical field, and we then consider what happens as φ is perturbed slightly from zero.

In the case of parallel rolls, the resulting perturbation to Rc is constrained by sym-

metry. There are two travelling parallel roll modes – one travelling in the positive y

direction, the other in the negative y direction – but both of these are equivalent, in the

sense that they are related by the y → −y reflection symmetry, and therefore they both

have the same critical Rayleigh number. Moreover, a parallel roll mode is unchanged by
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a reflection x → −x (which changes the sign of φ). This implies that ∆Rc for parallel

rolls is an even function of φ; and for small φ, it will (generically) be proportional to φ2

at leading order.

Now consider the perpendicular rolls, which are essentially the same as the two-

dimensional solutions discussed above. Assuming that we have found a way to break the

up-down symmetry in our layer, then, as explained above, there is asymmetry between

left- and right-going waves. Therefore, the perturbation to Rc will not be an even

function of φ; it will instead be proportional to φ at leading order.

Therefore, we expect the two-dimensional perpendicular mode to be preferred for

small φ, but for larger φ the parallel rolls ‘overtake’ and become the preferred mode.

Turning to the oblique rolls, we can examine these by using the following simple

model equation (from Matthews et al., 1992):

∆Rc = ±φB cos α − φ2C sin2 α, (2.42)

where ∆Rc represents the perturbation to the critical Rayleigh number (for small φ).

This is effectively a way of combining the effects on the parallel and perpendicular rolls

into a single equation. We choose B > 0 (without loss of generality) and C > 0 (because

when α = 90◦, we expect Rc to fall as the tilt increases1), and minimize ∆Rc over α

to find the preferred mode. We find that α = 0 is preferred for φ < B/2C ≡ φc, and

α = cos−1(φc/φ) for φ > φc.

In other words, perpendicular rolls are preferred for small φ, and oblique rolls are

preferred for larger φ. The transition between the two occurs at φ = φc = B/2C, and

we will refer to this point as the ‘Lifshitz point’ after a similar phenomenon in nematic

liquid crystals (see e.g. Silber et al., 1992).

For this model to be useful we require φc to be small; if not, then the assumption

of small φ would not hold, and the model would break down. However, in our actual

numerical results we find that B/2C is typically less than 0.1, so this is not really a

problem.

49



(a)

Re s

Im s
(b)

Re s

Im s

Figure 2.5: The equivalent of Figure 2.3 for the steady case.

2.4.3 The steady case

The above results have concentrated on the oscillatory case; the steady case (large ζ) is

a little different. Note that the name ‘steady’ is slightly misleading, since the solutions

are only truly steady if the field is vertical; this is illustrated in Figure 2.2(b), where the

eigenvalues pass through the origin at R(e), indicating a steady-state bifurcation. As we

shall see shortly, when the field is non-vertical the solutions do start to travel; the speed

of travel is proportional to φ for small φ.

The perturbations to Figure 2.2, that would be expected in the steady case, are

shown in Figure 2.5. This shows the path that the eigenvalues would take as R is

increased, for a small non-zero φ. This is obtained by starting from Figure 2.2(b)

and imagining a small perturbation that breaks the left-right symmetry – we are again

assuming that we have found a suitable way of breaking the up-down symmetry in the

layer. If the symmetry is only broken by changing the magnetic boundary conditions,

then as discussed above, the curve must pass through the origin, so Figure 2.5(b) results;

otherwise, we get Figure 2.5(a).

Notice that the eigenvalues in the right half-plane no longer remain purely real. In

Figure 2.5(a), the curve crosses the imaginary axis at a non-zero value of Im s, meaning

that the bifurcation to convection is no longer a steady-state one, but an ‘imperfect’

1When α = 90◦ (or equivalently, kx = 0), we see from equations (2.15)–(2.23) that φ now only enters

the problem in the combination Q cosφ. This indicates that increasing φ is equivalent to reducing Q,

which in turn increases instability to convection and reduces Rc. We conclude that (when α = 90◦ at

least) Rc must fall as the tilt increases.
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bifurcation in which a small non-zero oscillation frequency (or equivalently, speed of

travel) is present. Compare this to the oscillatory case in which the speed of travel is

non-zero even when the field is vertical. In Figure 2.5(b), we do have a steady-state

bifurcation at onset (the curve goes through the origin), but Im s still becomes non-zero

for R > Rc.

Another difference between the steady and oscillatory cases is that in the former,

the graph only crosses the imaginary axis once, indicating that waves can only travel in

one direction (either leftwards or rightwards). This indicates that we could transform

to a moving frame in which the pattern appeared to be steady. (Contrast this to the

oscillatory case, where the graph crossed the imaginary axis at points both above and

below the origin, indicating that both left-going and right-going waves could be present

simultaneously, and no such Galilean transformation could be made.)

We now turn to the three-dimensional problem. In the oscillatory case, we noted

above that one expects perpendicular rolls for small φ, and oblique rolls for large φ. This

arose by considering the separate left-going and right-going perpendicular roll modes,

and the symmetry breaking between them; this meant that ∆Rc for these modes was

proportional to φ.

In the steady case, there are not separate left-going and right-going modes, and

so the symmetry breaking does not apply; instead, ∆Rc for the perpendicular rolls is

proportional to φ2 (not φ as before). Also, the parallel rolls do not travel; since there is

no reason for them to travel in either the positive or negative y direction, in the steady

case they do not travel at all. Thus ∆Rc is proportional to φ2 for the parallel rolls as

well. So, without knowing the respective constants of proportionality (which cannot be

obtained through simple symmetry arguments alone), we cannot say anything about

which orientation of roll is going to be preferred in the steady case.

2.5 Results

2.5.1 Small ζ (oscillatory case)

Two-dimensional results (ky = 0)

In this section, we give the results of our numerical solution of the eigenvalue problem

described in section 2.2. The problem solved is exactly the one described in that section,

with the following choice of parameters: Q = 200, ζ = 0.1, σ = 1. (However, we do
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Figure 2.6: Plots of eigenvalues s in the complex plane as R is varied. The

crosses are plotted at intervals of 200 in R. In each case k is fixed and equal

to (kc, 0), where kc is the critical wavenumber (i.e. the one that minimizes

Rc). (a) Vertical field (φ = 0◦), with κ̂ = 1. (b) φ = 15◦ and κ̂ = 1. (c)

As (b), but with a fixed angle condition at the bottom of the layer (the

other three cases use a tied field condition at the bottom.) (d) φ = 15◦ and

κ̂ = (z + 1/2)−3. Note: in case (c) the locus of eigenvalues passes through

the origin, whereas in case (d) it merely passes very close to the origin – it

in fact crosses the imaginary axis slightly below the origin.
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not find any significant qualitative difference for different choices of parameters, except

for the change between oscillatory and steady behaviour as ζ varies.) The magnetic

boundary conditions are to match onto a potential field above the layer, and to have a

perfectly conducting lower boundary (as discussed in section 2.2), except where stated

otherwise below.

Figure 2.6(a) shows a plot of the eigenvalues in the complex plane for a typical case

with a vertical magnetic field. As expected on symmetry grounds, the eigenvalues come

in complex conjugate pairs, showing that there is no preference for either left-going or

right-going waves (cf. Figure 2.2a). Figure 2.6(b) shows the same situation but with

φ increased to 15◦. In this case a diagram similar to Figure 2.3(b) is expected, as

explained above. Surprisingly, however, the eigenvalues still come in conjugate pairs,

and the left-going and right-going waves still have identical growth rates (at any given

Rayleigh number)!

This unexpected result is apparently a consequence of our particular choice of bound-

ary conditions. For example, when using a fixed-angle condition at the bottom (instead

of the ‘tied field’ condition), but keeping the potential field condition at the top, Figure

2.6(c) results. (A similar graph is also obtained if one uses a tied field at one surface with

a fixed angle condition at the other.) Therefore, it appears that the left-right symmetry

is not always broken by choosing different magnetic boundary conditions at top and

bottom; apparently it sometimes is and sometimes isn’t, depending on precisely which

boundary conditions are chosen.

This is unfortunate since, as discussed above, the whole point of introducing the

different boundary conditions at top and bottom was to try to break this symmetry. Of

course, we could abandon our preferred choice of boundary conditions (Figure 2.6(b)),

and use a combination that does break the symmetry (e.g. Figure 2.6(c)). However, we

have argued that the fixed-angle condition is unphysical, and we prefer not to use it.

At this point, therefore, we bring in our alternative method of breaking the symme-

try: a non-uniform thermal diffusivity κ. This is not unreasonable since in the Sun, the

thermal diffusivity decreases as a function of depth, due to hydrogen ionization effects

(Meyer et al., 1974). The profile κ̂ = (0.5 + z)−3 was chosen. (In fact, the precise

choice of this function does not make much qualitative difference; any monotonically

decreasing function seems to give similar results.) Figure 2.6(d) shows the path of the

eigenvalues that is now obtained. As expected, the left-right symmetry is broken, and

the left-going waves are preferred (in this case). (If we ‘reverse’ the choice of κ, so that
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Figure 2.7: Plots of the solutions obtained, with φ = 45◦. The contours

show the temperature perturbation, and the arrows show the fluid velocity.

The top two plots have κ̂ = 1 while the bottom two have κ̂ = (1/2 + z)−3.

The left panels show the left-travelling waves, while the right panels show

the right-going solutions.

it increases rather than decreases with depth, then the preferred direction of travel is to

the right – as might be expected.)

Figure 2.7 shows some of the solutions themselves. These are produced by multiply-

ing the eigenfunctions by exp(ikx) and plotting the real part of the result (as explained

earlier). The upper two panels show the solutions when κ was chosen to be uniform;

note that these are not simply mirror images of each other, so the symmetry π has

indeed been broken here, even though the growth rates (and critical Rayleigh numbers)

for these two solutions are, for whatever reason, identical. In the bottom two pictures,

in which κ varies with depth, this is no longer the case. Notice that the temperature

perturbation is now concentrated towards the bottom of the layer; this is because heat

is being transported more by conduction near the surface, where the heat conductivity

is greater, and more by convection at the deeper levels, where the conductivity is lower.

Figure 2.8 shows the variation of the critical Rayleigh number with wavenumber.

The first plot shows the vertical field case, in which the oscillatory mode is preferred

when it exists (for kx sufficiently small). The second plot shows what happens when the

field is inclined; the preference for left-going waves is clearly visible. Note that the right-

going wave has two critical Rayleigh numbers for each wavenumber; this is because the

eigenvalue crosses the imaginary axis twice as R changes (see Figure 2.6d). The lower

of these two values is the physically relevant one.
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Figure 2.8: Rc as a function of kx. (a) Vertical field. We obtain both steady

solutions (dotted curve) and oscillatory solutions (dash-dotted curve). (b)

Tilted field (φ = 10◦). Here all solutions travel, either leftwards (solid curve)
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Figure 2.9: Graphs of the critical Rayleigh number (Rc), the wavenumber

(kx) and the wave speed, as functions of φ.
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Figure 2.9 shows how Rc, kx and the wave speed vary as a function of the tilt angle

φ. These graphs confirm that the perturbations to each quantity are proportional to φ

for small φ, as expected on symmetry grounds (see previous section). This applies for

φ up to about 5–10◦. After this point, the critical Rayleigh number decreases for both

left- and right-going waves. Note also that the wavenumber decreases (equivalently, the

wavelength increases) with increasing tilt, indicating that the solution is being stretched

out along the tilt direction. This is understandable in that one would expect the convec-

tion cells to try to align themselves with the magnetic field lines, and this would cause

them to appear to stretch out along the tilt direction.

Three-dimensional results

So far our results have been restricted to the two-dimensional case with ky = 0; we now

move on to three-dimensional solutions. To clarify, we are at this point continuing to

use our depth-dependent profile for κ̂, which, as mentioned above, is sufficient to break

the symmetry between the leftward- and rightward-travelling modes.

Figure 2.10 shows contour plots of Rc as a function of both kx and ky for four different

tilt angles. (Note that the convention that we have used is that left-going waves are

plotted for kx negative, and right-going waves are plotted for kx positive.2) The preferred

mode corresponds to the point in k-space that minimizes Rc; this point has been marked

by an asterisk on each diagram. Figure 2.11 shows the angle α (as defined in equation

2.41) corresponding to the preferred mode. This shows clearly which type of roll (from

Figure 2.4) is preferred at each φ; α = 0◦ corresponds to perpendicular rolls, α = 90◦

represents parallel rolls, while an α in between these two values means that oblique rolls

are preferred. Finally, Figure 2.12 shows the critical Rayleigh number for the different

types of rolls as a function of φ.

Figures 2.10 and 2.11 are related, in that the position of the minimum on Figure

2.10, for a given φ, determines the value of α corresponding to that φ on Figure 2.11.

Hence, we see that the minimum is located on the negative kx axis for the smallest

φ values (Figure 2.10a), which means that α is zero for small φ. When φ reaches a

critical value (just above 10◦ in this case), the minimum leaves the kx axis and moves

2Effectively what we are doing here is demanding that Im s be negative, and then using the sign of kx

to indicate the direction of travel. This is in contrast to our previous figures where kx is assumed positive

and the sign of Im s was used to indicate the direction of travel. The two are of course equivalent; this

can be seen from equations (2.11)–(2.14), which remain invariant if one changes k to −k and s to −s.
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Figure 2.10: Contour plots showing critical Rayleigh number as a func-

tion of wavevector, with positive (negative) kx representing right-going (left-

going) waves. The shaded areas represent regions where no right-going so-

lution exists. The preferred mode (corresponding to the minimum Rc) is

indicated by a small asterisk in each plot. The four cases are (a) φ = 10◦,

(b) φ = 40◦, (c) φ = 72.5◦, (d) φ = 75◦.
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Figure 2.11: The preferred orientation α of the convection rolls as a func-

tion of φ.

up and to the right. This is quite rapid at first and is visible as a sharp increase in

α on Figure 2.11. Physically, this means that the preferred mode has changed from

being perpendicular rolls to being oblique rolls. Indeed this transition is the same as

the one predicted by symmetry arguments (section 2.4.2). By φ = 40◦ (Figure 2.10b)

the minimum has settled to a position corresponding to α ≈ 70◦. For larger φ, a second

local minimum appears on the positive ky axis; this is not initially the lowest of the

two minima, but it rapidly decreases in value and eventually ‘overtakes’ the original

minimum to become the new global minimum. This results in a discontinuous change

in α and is the reason for the discontinuity in Figure 2.11. The point where the minima

‘cross’ can be seen in Figure 2.10(c). For higher values of φ the parallel rolls are now

dominant (Figure 2.10d).

This behaviour can be compared to the predictions of the simple model from section

2.4.2, and in particular, equation (2.42). As already stated, the main prediction was

that there would be a transition from perpendicular to oblique rolls, and this transition

was expected to occur at φ = B/2C where B and C are as defined in (2.42). The values

of B and C can be estimated by inspecting the numerical results near φ = 0; we find

B = 163.6 and C = 923.2, which gives B/2C = 0.089 radians, or 5.1 degrees, which is
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Figure 2.12: The critical Rayleigh numbers Rc for various modes as a

function of φ. The colour coding is the same as in Figure 2.4. The red curves

show critical Rayleigh numbers for perpendicular rolls, corresponding to our

two-dimensional solutions; the dashed curve is for the right-going rolls, and

the solid curve is for the leftward-travelling solutions. The blue curve is for

parallel rolls, and the green for oblique (more precisely, the green curve shows

the critical Rayleigh number for the most unstable oblique mode, when such

a mode is more unstable than either the perpendicular or parallel rolls).
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about a factor of two too small (compared to the actual location of the Lifshitz point).

Therefore, the model equation (2.42) is accurate qualitatively but not quantitatively,

although the latter is hardly surprising given the ad hoc nature of the model (e.g. the

factors of cos α and sin α were invented in order to satisfy the right properties, rather

than to be an exact quantitative description).

One thing that the model equation (2.42) does get wrong, even qualitatively speak-

ing, is that it does not predict the discontinuous jump in α, and the associated appear-

ance of a second local minimum in Rc, which occurs for larger values of φ. Therefore,

we need to explain why this second minimum appears.

We can do this by considering the governing equations when α = 90◦. In this case

the horizontal component of the imposed field disappears from the equations, and this

mode sees only the vertical component. As the tilt of the field increases, the vertical

component of the field decreases and so the effective Chandrasekhar number decreases.

Beyond a certain tilt the effective Q becomes too small for the oscillatory instability,

and the mode becomes steady. This is the fact that was missing from the analysis of

section 2.4. The critical Rayleigh number falls more quickly after this point (this is

visible on Figure 2.12 as a ‘kink’ in the curve for parallel rolls, near φ = 70◦) and the

steady parallel mode soon becomes the dominant one.

The preference for parallel rolls for large φ is consistent with the work of Danielson

(1961), who showed that in a horizontal magnetic field (φ = 90◦), convection would

consist of parallel rolls. Essentially, this is because this form of motion can just bodily

displace the field lines, without distorting them; perpendicular or oblique rolls would

have to twist the field lines, and this would be resisted by the Lorentz force.

One final point concerning Figure 2.10 is the meaning of the grey, shaded areas on

the contour plots. (Note that the jagged appearance of these regions is not real, but

is due to limited resolution.) These regions arise because, for certain wavevectors, no

right-going wave exists, only a left-going one. This can be seen clearly on Figure 2.8(b),

for example, where the right-going branch (the dashed curve) does not extend to values

of kx greater than about 6.

It is also of interest to consider what happens to the position of the Lifshitz point

as the amount of up-down asymmetry (as determined by the choice of κ) is varied. To

investigate this, we set κ = (0.5 + z)−κ0 , and then plotted the value of φ corresponding

to the Lifshitz point as a function of κ0; see Figure 2.13. It can be seen that as the

amount of up-down asymmetry is increased (corresponding to larger values of κ0), the
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Figure 2.14: Contour plots of Rc as a function of wavevector in the case

where κ̂ does not vary with depth. The tilt angle φ = 15◦. Notice that

although these results are anisotropic, they are still left-right symmetric.

This shows that the left-right symmetry, found in the two-dimensional results

above, continues even when ky 6= 0.

Lifshitz point occurs at larger and larger values of φ.

For completeness, we also present the three-dimensional results for the case where κ̂

does not vary with depth. (Recall from the previous section that in this case, the left-

right symmetry is not broken, despite expectations to the contrary.) The contour plot

of Rc against kx and ky is shown in Figure 2.14. Notice how this unexpected left-right

symmetry persists even when ky 6= 0.

2.5.2 Steady case

The results here are actually a little simpler than the oscillatory case, and so less space

will be devoted to these. As noted above, the solutions are expected to start travelling

as soon as φ increases above zero, but we cannot say from symmetry arguments which

direction the solutions will travel in. Nor can we say in advance which of parallel,

perpendicular, or oblique rolls will be preferred.

In order to obtain a steady, rather than oscillatory, bifurcation (when φ = 0), we have

taken ζ = 1.1 instead of 0.1 in this section (leaving the other parameters unchanged).

We are also using the depth-dependent profile for κ̂ in this section.

A contour plot of Rc against kx and ky, for the case φ = 45◦, is shown in Figure

2.15. Note that in this case, all solutions travel to the left (i.e. against the tilt), and

no solutions travel to the right; consequently, the figure only shows results for kx < 0.
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Figure 2.15: Contour plot of Rc against kx and ky in the steady case.

Note that all solutions travel leftwards (or else are steady), hence only the

left-hand half of the diagram is shown.

Notice how the anisotropy introduced by the tilt is clearly visible. The minimum Rc

occurs on the ky axis, indicating that parallel rolls are preferred. In fact, we find that

parallel rolls are the preferred mode for all φ in this case.

In Figure 2.16 we plot Rc, the wavenumber and the wave speed as functions of φ,

for both parallel and perpendicular rolls. As regards the wave speed, this is zero for the

parallel rolls (this is just because of the y → −y reflection symmetry), but it is non-zero

for perpendicular rolls (and in fact oblique rolls as well). Note how the speed of travel

is proportional to φ for small φ, as expected (indeed, this is true up to quite large φ,

about 60◦ or so).

We can also compare our results to those of Chandrasekhar (1961) who briefly con-

sidered convection in inclined fields in the steady (large ζ) case. He also found that

parallel rolls (with kx = 0) would be the preferred mode for all φ. However, his model

was purely Boussinesq, with uniform κ and identical boundary conditions at top and

bottom. Therefore, his model contained the up-down symmetry that we talked about

in the previous section, and so his solutions did not travel at all. By contrast, all our

solutions (except the parallel rolls) travel to the left. This may seem irrelevant, since

the preferred mode is the parallel rolls, which do not travel. However, once we move on

to nonlinear solutions, all modes will be present in some sense, and we might expect to

start to see the effects of the travelling modes.
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Figure 2.16: Graphs of the critical Rayleigh number (Rc), the wavenumber

(|k|) and the wave speed, as functions of φ. The solid line is for parallel rolls,

while the dashed line is for perpendicular rolls.
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2.6 Conclusions

In this chapter we have investigated the linear stability theory for magnetoconvection in

a Boussinesq fluid layer with an inclined magnetic field and a depth-dependent thermal

diffusivity κ.

We included the depth-dependent κ as a way of breaking the up-down symmetry

of the fluid layer, a symmetry that is present in Boussinesq but not in compressible

convection. Since compressibility is important in sunspots, it was important to find

a way to break this symmetry in our model. We at first tried to do this simply by

modifying the boundary conditions at the top and bottom of the layer, but that was

found to be unsatisfactory (for reasons explained above), and so we included the depth-

dependent κ instead.

The most important effect of tilting the field is that the layer becomes anisotropic, so

that rolls of different orientations have different stability properties, and modes can now

exhibit a preferred direction of travel (either towards or away from the tilt direction).

When ζ is large (the ‘steady’ case) the preferred mode is parallel rolls for all φ.

These are steady, but rolls in any other orientation travel (with a speed proportional to

φ for small φ). These travelling modes are not preferred near onset, but their presence

suggests that patterns in the nonlinear regime might travel.

For small ζ (the ‘oscillatory’ case), the results are more complicated. In the two-

dimensional problem (ky = 0), we find broadly similar results to those of Matthews

et al. (1992), with symmetry-breaking between left- and right-going modes. In the

three-dimensional problem (ky 6= 0), we find that travelling perpendicular rolls are

preferred for small φ, travelling oblique rolls for intermediate φ and steady parallel rolls

for large φ. Note that Matthews et al. (1992) predicted that the transition between

perpendicular and oblique rolls would be found, but they did not predict the transition

between oblique and parallel rolls for larger φ. This comes about because the vertical

component of the magnetic field drops as φ increases, which triggers a change from

oscillatory to steady convection.

Perhaps the main difference between our model and that of Matthews et al. (1992)

is in the direction of travel of the preferred mode. We find waves travelling to the left

(against the tilt) for all φ; they find waves travelling to the right for most φ, but for a

small range of φ near 90◦, this reverses and the waves travel to the left. They can also

produce left-going waves for all φ by changing their boundary conditions. Clearly, the
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direction, and speed, of travel are highly model-dependent. Nevertheless, in terms of

application to sunspots, it is encouraging that some models, at least, show a reversal

of direction of travel as φ increases – even if it is the wrong way around (in a sunspot,

features are observed to move inwards, i.e. ‘left’, for small φ and right for large φ)!

66


