
Chapter 1

Introduction

The Sun is familiar to all of us, but what are perhaps less familiar are the dark spots

that sometimes appear on its surface (Figure 1.1). These ‘sunspots’ were first observed

telescopically by Galileo and others in the seventeenth century, but even today, many

of their properties remain unexplained.

Sunspots are created when strong magnetic fields, generated deep within the Sun,

rise up to the solar surface. The magnetic field partially inhibits the convection that is

normally found at the surface, and this weakened convection is less able to transport

heat into the sunspot, making it cooler, and hence darker, than its surroundings.

What is less well understood is the detailed nature of this ‘magnetoconvection’ that

is taking place within a sunspot. As we shall see in the following sections, sunspots

contain detailed fine structure which is ultimately the result of magnetoconvective pro-

cesses. The aim of this thesis is to try to better understand these processes by studying

magnetoconvection in various situations, beginning with simple models and working up

to more complex numerical simulations.

We will start by giving, in this chapter, a broad introduction to the subject of

sunspots, covering both observational and theoretical topics. We will then give a brief

summary of the remainder of the thesis, indicating how it relates to sunspots and to

some of the outstanding theoretical questions about them.

1.1 Internal structure of the Sun

Before describing sunspots, it may be helpful to give a quick outline of the structure of

the Sun itself. The Sun is a (more or less) spherical ball of gas, 696 000 km in radius,
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Figure 1.1: Full disc image of the Sun taken by the Swedish 1-m Solar

Telescope on 15 July 2002. Courtesy Royal Swedish Academy of Sciences.
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Figure 1.2: Sketch of the internal structure of the Sun.
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composed mostly of hydrogen and helium. A cross-section is shown in Figure 1.2. At

the centre is the core, containing approximately the inner 25% (by radius), where the

density reaches values up to 150 times that of water, and the temperature reaches some

15 million degrees Kelvin. Under these extreme conditions, the nuclear fusion reactions

that generate the Sun’s energy can take place. Above the core, there is the radiative

zone (which technically also includes the core), where heat energy is transported towards

the surface by radiation, and the convective zone (including the outer 30% by radius),

where convection becomes the principal means of energy transport. This convection is

indeed observed at the solar surface, where it is known as ‘granulation’.

The interior of the Sun cannot be observed directly, of course (although helioseismol-

ogy can provide indirect measurements of the interior), and so the internal structure is

calculated using models. Indeed, models of stellar structure have been quite successful

in explaining the observed properties of the Sun and other stars. The basic idea in these

models is to assume that the star is in a static equilibrium state. There are then five

equations to be solved: one for mass continuity, one for hydrostatic force balance (the

pressure gradient must balance gravity), one for energy conservation (the net outward

heat flux must balance the energy generation from nuclear reactions), one for heat trans-

port (this gives the temperature gradient required to transport a given heat flux), and

finally an equation of state (relating the temperature, pressure and density of the gas).

These can be solved (together with appropriate boundary conditions) to determine the

internal structure of stars of various masses and compositions.

For the heat transport equation, one must consider the three different methods of

heat transfer: conduction, radiation and convection. For stars like the Sun, conduction

turns out to be negligible, so only the last two need to be considered. The equations

describing radiative heat transfer are well understood; convection, on the other hand, is

a highly nonlinear process and there is no simple formula relating the convective heat

flux to the temperature gradient in a compressible fluid. Therefore, convection is usually

approximated by a ‘mixing length’ formalism, where a fluid element is assumed to rise

adiabatically by a given length (the mixing length) before giving up its excess heat to

the surroundings. The mixing length itself is left as a free parameter, usually expressed

as a proportion of the local pressure scale height.

The solution of such models yields (for the Sun) the structure shown in Figure 1.2.

One can also use a similar approach to model subsurface structure in sunspots; the

mixing length theory for convection can be adapted (in a simple way) for magnetocon-
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vection, by taking a reduced mixing length parameter in order to model the reduced

convective efficiency. This will be discussed further in section 1.3.

1.2 Sunspot observations: past and present

The earliest recorded observations of sunspots go back to Chinese astrologers, who were

apparently observing them at least as early as the 11th century BC. The largest spots

would have been visible to them with the naked eye at sunrise or sunset, or reflected

on the surface of still waters. There are also various records of sunspot observations

in the Western world, apparently going back as far as the ancient Greeks. However,

Western religious and philosophical thinking dictated that the Sun was a celestial body,

and therefore perfect in every way, and spotless. Thus, the sunspot observations were

usually ignored or forgotten, and it was not until the invention of the telescope, in the

seventeenth century, that the existence of sunspots became widely acknowledged in the

West.

These first telescopic observations were made by Galileo, Christoph Scheiner, and

David and Johannes Fabricius, around 1610. (There is still apparently some controversy

as to who of these made the first observation.) One of Galileo’s sunspot drawings is

shown in Figure 1.3. Even from these early observations, it was clear that sunspots are

composed of two distinct regions: a dark central area and a lighter outer part. Today,

the inner region is known as the umbra (from the Latin for ‘shade’ or ‘shadow’), and

the outer area is called the penumbra (from Latin paene, ‘nearly’ or ‘almost’, + umbra).

Further progress was slow, in part because there followed, between the years of 1645

and 1715, a period of extremely low sunspot activity, which later became known as

the Maunder Minimum. The main discovery in the eighteenth century was that of the

Wilson depression, which refers to the fact that the visible surface of a sunspot is located

at a deeper vertical level in the Sun than the normal photosphere. It was detected by

Alexander Wilson in 1769 by careful observations of sunspots near the edge (limb) of

the solar disc.

When larger telescopes became available, in the nineteenth century, it became pos-

sible to observe fine details of umbral and penumbral structure. Telescope technology

has been improving continually since then and images of stunning detail are now being

obtained by instruments such as the Swedish 1-metre Solar Telescope, which came into

service in May 2002. Images obtained from this telescope are displayed in Figures 1.4

12



Figure 1.3: One of Galileo’s sunspot drawings, from 23 June 1613.
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Figure 1.4: An image taken by the Swedish 1-m Solar Telescope showing

a small regular sunspot. Note also the pores visible at the right-hand side.

Courtesy Royal Swedish Academy of Sciences.
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Figure 1.5: A close-up view of the sunspot group visible in Figure 1.1.

These sunspots have a more irregular structure.
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Figure 1.6: A sketch of a cross-section through a typical sunspot.

and 1.5. Sunspots, with many small-scale structures and fine details, can be seen; we

will return to these fine structures in more detail in section 1.4. Note also the presence

of smaller dark patches, known as pores; these are similar phenomena to sunspots, but

they are smaller and they do not have penumbrae.

Our modern understanding of sunspots begins with George Ellery Hale’s discovery,

in 1908, that sunspots are associated with strong magnetic fields. He found this by

measuring the so-called Zeeman effect, the splitting of spectral lines by a magnetic field,

using an instrument that he himself invented, the spectroheliograph. In due course it

was realized that this magnetic field would inhibit convection, explaining why sunspots

are cooler and darker than the normal solar surface.

The magnetic field strength at the centre of a large sunspot might reach 0.3 tesla

(T).1 For comparison, the Earth’s magnetic field at the surface has a strength of about

5 × 10−5 T; the field strength of a typical bar magnet might be 0.01 T; a medical MRI

unit produces fields of about 1.5 T.
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1.3 Overall structure of sunspots

Sunspots of many different sizes are observed. The smallest have radii of 1800 km or so,

while very large spots can sometimes attain radii of 30000 km or more (Solanki, 2003).

However, all well-developed regular sunspots (such as the one shown in Figure 1.4) have

a similar structure, and so, at least in the case of the more regular, circular spots, we

can talk about the structure of a typical sunspot.

Figure 1.6 shows a rough sketch of a vertical slice through a sunspot. The basic

physical picture is that there is a vertical column of magnetic flux (indicated by the

orange and yellow regions) surrounded by the ordinary field-free solar plasma. The

orange region marks areas where the field remains near-vertical, which gives rise to the

umbra at the surface. In the yellow regions, the field has become significantly inclined

to the vertical, and it is these inclined fields that (somehow) allow the penumbra to

form.

Over the years, a number of models have been put forward to try to account for the

large-scale structure of sunspots.2 One of the first of these models was due to Schlüter

and Temesvàry (1958), and a great many have been developed since; an extensive review

is given in sections 4.4 to 4.8 of Solanki (2003).

To make the problem mathematically tractable, these models typically assume that

the spot is circular and axisymmetric; this is not true for real sunspots, at least on

small scales (e.g. the penumbra is considerably non-axisymmetric on fine scales), but

it is a reasonable assumption for modelling the large-scale overall structure. The other

main assumption made is that the sunspot is in equilibrium with its surroundings (both

mechanically and thermally). Again, this can be justified in an average sense, since

while real sunspots do have dynamic features, occurring on timescales of perhaps an

hour or so, the total lifetime of a spot is much longer than this (large spots can persist

for several months).

To describe the equilibrium state we basically need to ensure both a hydrostatic and

a thermal equilibrium. The equation for the hydrostatic force balance is

−∇p + ρg + j ∧ B = 0. (1.1)

The horizontal force balance in a sunspot is therefore between the gas pressure gradient,

which exerts an inward force (because the cool interior is at a lower pressure than the

1Magnetic field strengths are also commonly quoted in gauss (G); 1 G = 10−4 T.
2These models can also be used for pores, if the penumbra is omitted.
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hot exterior), and the Lorentz force (j ∧ B), which is in an outward direction (this

can be thought of as a gradient of magnetic pressure B2/2µ0, with a higher magnetic

pressure inside the spot than outside). In the vertical direction, one must balance the

gas pressure gradient against gravity (as well as, possibly, Lorentz forces).

Equation 1.1, together with the equation of state, give three equations in the four

unknowns p, ρ, T and B. (Equation 1.1 counts as two equations because it has both

vertical and horizontal components; also B only really counts as one scalar unknown

because we have the additional constraint ∇·B = 0.) To close the system, an additional

condition must be added. The ‘proper’ way to do this is to include an energy equation,

describing the thermal equilibrium of the sunspot. However, in some models, a simpler

approach is taken, in which one simply prescribes the pressure (or some other variable) as

a function of depth. This produces a model which is not strictly in thermal equilibrium,

but this is not as bad as it sounds, since one can vary the assumed profile until a

reasonable match with observations is found.

Even from fairly simple models, it was realized early on (Schlüter and Temesvàry,

1958) that the energy flux through the umbra is too great to be provided by radiation

alone, and therefore convection must be occurring below the visible surface of the umbra.

In other words, the magnetic field of the umbra must inhibit convection only partially,

not completely.

1.3.1 The model of Jahn and Schmidt (1994)

We will now describe a recent model, that of Jahn and Schmidt (1994), as we can use it

to illustrate one or two points about sunspot structure. The model is shown in Figure

1.7.

The first thing we need to do is make some assumptions about the structure of the

magnetic field. Earlier models approached this by using a self-similarity method, but

this does not give a particularly good fit to observations. An alternative approach,

and the one used by Jahn and Schmidt (1994), is to assume that j = 0 everywhere

except on isolated current sheets. It is found that one current sheet enclosing the entire

sunspot is insufficient to model the penumbra; Jahn and Schmidt (1994) chose to take

two current sheets, an inner one separating the umbra from the penumbra, and an

outer one enclosing the entire structure. This approach produces a sharp distinction

between umbra and penumbra (as is observed) and allows the different energy transport
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Figure 1.7: The axisymmetric sunspot model proposed by Jahn and

Schmidt (1994). The small black arrows indicate heat fluxes (per unit area).

The blue dashed lines indicate the position of current sheets within the model.

The yellow region indicates the extent of the penumbra, defined in this model

as the region where interchange convection, with associated lateral heat flux

of ǫFsun, takes place.
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and thermodynamic properties between the two to be described. It also avoids the

complexity of dealing with volume currents in the penumbra which would otherwise be

needed (e.g., Jahn 1989). (One criticism, however, is that it produces a sharp jump in

the magnetic field strength at the umbra-penumbra boundary, which is not observed.)

An energy equation is included (with convection being described by a mixing-length

theory, using a reduced mixing length in the umbra and penumbra in order to simulate

the reduced convective efficiency there). When solving this equation, boundary con-

ditions for the energy flux are needed. At the top we can simply match to observed

umbral and penumbral energy fluxes; there are also (more indirect) observations that

can help with the lateral boundary conditions. In particular, it is observed that the

brightness and surface temperature of the umbra both vary during the 11-year solar

cycle.3 This can only be explained if the umbra is thermally well insulated from its

surroundings. The penumbra shows a similar intensity variation, although with a much

lower amplitude, implying that significant heat flux is being transported from the quiet

Sun into the penumbra. This is usually interpreted as a convective process (sometimes

called ‘interchange convection’), with material (and thermal energy) being exchanged

between the penumbra and quiet Sun.

Therefore, Jahn and Schmidt (1994) assume that the flux tube comprising the

sunspot is completely thermally insulated from its surroundings, except for the inter-

change convection that is taking place in the penumbra. This penumbral convection is

modelled as a heat flux of ǫ times the normal solar heat flux, which is carried into the

penumbra from the external plasma. (It is found that values of ǫ between about 0.6 and

0.7 seem to be required in order to give plausible results.) This interchange convection

(and associated heat flux) extends down from the surface to a depth zbp; this depth

is computed as part of the model (so that the stratifications of umbra and penumbra

match), and it can be thought of as the bottom of the penumbra. Its value is typically

found to be about 4000 km in this model.

We see that any model for convection in sunspots would ultimately have to explain

how this behaviour for the heat flux arises. In particular, it should explain the dif-

ferences between convection in the umbra, in which the heat flux is channelled along

the field lines, with almost no mixing across the boundary of the flux tube, and in the

penumbra, where convective interchanges apparently do occur between the penumbra

and the external plasma, with a corresponding heat flux into the spot. (Notice also how

3The solar cycle is covered in section 1.6.4.
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these convective processes, which occur at small scales, have an impact on the overall

large-scale structure of the spot.)

1.3.2 Subsurface structure: ‘cluster’ and ‘monolith’ pictures

So far we have considered a sunspot to be a single homogeneous flux tube extending

downwards beneath the surface. In fact, this is a simplification, and the flux tube will

have more detailed structure than this. There are two competing theories as to what

the subsurface structure looks like: either a monolithic column of flux, or a cluster of

separate ‘mini’ flux tubes. (A discussion of the differences between the two models can

be found in section 4.3 of Solanki 2003.)

In the monolithic model, the sunspot consists of a single flux tube that remains a

coherent structure even down to great depths. The magnetic field within the tube is

strong enough to reduce the efficiency of convection, but not so strong as to suppress

it completely. In other words, magnetoconvection (as opposed to ordinary field-free

convection) occurs inside the flux tube, and this different type of convection is why the

heat flux is lower inside the flux tube than outside.

The alternative, cluster, model was first proposed by Parker (1979), who suggested

that the flux tube would be subject to the so-called fluting instability, which would

cause it to break up into a tight cluster of separate ‘mini flux tubes’ just below the solar

surface. The spaces in between these individual tubes would contain field-free plasma.

The field inside the individual tubes would be strong enough to completely suppress

convection, but within the field-free regions, convection would be able to take place as

normal. Thus, in this model the reduced convective efficiency is caused not by a different

form of convection, but simply by a reduced spatial filling factor.

The actual conditions for the fluting instability were set out by an earlier calculation,

due to Meyer et al. (1977); it was found that near the surface, the instability would be

suppressed by magnetic buoyancy processes, but deeper down, the fluting instability

could indeed take place. However, this calculation assumed a static equilibrium configu-

ration, while in reality, convection takes place both inside and outside the sunspot, and

this must be taken into account. The central question is therefore whether convection

would be able to stabilize the flux tube against fluting. This question remains to be

answered, but it has been suggested that the necessary effect could be provided by a

so-called ‘collar flow’, a supergranular-scale convection flow outside the sunspot. (See
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also section 1.5.4, below).

1.4 Fine structure in sunspots

We now move on from overall properties of sunspots, and turn to their fine structure.

Sunspots are now known to have considerable small-scale structure, in both the umbra

and the penumbra (cf. Figures 1.4 and 1.5). In addition, the magnetic field has been

found to have an extraordinary non-axisymmetric structure in the penumbra.

Further information about sunspots and their fine structure can be found in the

recent review articles by Thomas and Weiss (2004) and Solanki (2003).

1.4.1 Umbral fine structure

The main feature of note in the umbra is the presence of so-called umbral dots, the

first recorded observation of which was by Thiessen (1950). Umbral dots are small

bright features visible against the dark background, with temperatures typically about

1000 K hotter than the coolest part of the umbra. The latest observations (Sobotka

and Hanslmeier, 2005) appear to have spatially resolved most of the dots; their typical

diameter is found to be about 100 km. Umbral dots are also often observed to travel

radially towards the centre of the spot; this is particularly true of dots near the edge of

the umbra. The dots are generally interpreted to be convective features, since they are

warm compared to the umbral background and generally show upward motions.

Convection is not observed directly in the umbra, since there is a ‘radiative blanket’, a

stably stratified region near the surface in which heat is transported purely by radiation;

however, we know that convection must be taking place below this layer. The umbral

dots presumably represent particularly vigorous rising convective plumes, which are able

to penetrate through the radiative blanket and reach the surface. (The theory of umbral

magnetoconvection is discussed further in section 1.5.1.)

The pattern of umbral dots also seems to be better explained by the monolithic,

as opposed to the cluster, model (section 1.3.2). This is because a cluster of isolated

flux tubes, with convection in between, would be expected to produce a network of

bright lines rather than isolated bright points; on the other hand, magnetoconvection

(in a monolithic flux tube) seems to be able to explain the umbral dots as a pattern of

spatially modulated oscillations (see section 1.5.1).
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Another feature of umbrae worth mentioning is that they sometimes contain lanes of

bright material, crossing from one side to the other, which are known as light bridges.

These mark out ‘fissures’ in the umbra and generally contain weaker, more horizontal

magnetic fields than the rest of the umbra. In addition, there are also sometimes ‘dark

nuclei’, dark regions containing few if any umbral dots; these probably correspond to

regions of stronger magnetic field (cf. section 1.5.1).

1.4.2 Penumbral fine structure

The penumbra shows a very rich structure. The most prominent feature is the presence

of alternating light and dark filaments which extend (approximately) radially outwards

from the centre. Modern high resolution images show that the bright filaments are

themselves composed of separate ‘grains’, which are typically about 350 km wide (or

less), with lengths ranging from about 350 to 2500 km. The grains often show internal

structure with a few dark bands crossing them (Rouppe van der Voort et al., 2004). The

grains are also observed to move radially, with the motion being in an inward direction

within the inner 60% or so of the penumbra (by radius), and an outward direction in

the outer 40%, with typical speeds of about 500 m s−1. The inward-moving grains

sometimes penetrate into the umbra, where they become umbral dots.

The magnetic field in the penumbra has a curious ‘interlocking-comb’ structure,

in which the inclination of the field to the vertical varies significantly in the azimuthal

direction (see Figure 1.8). This variation appears also to be correlated with the intensity

variations between the bright and the dark penumbral filaments. The picture that we

have is as follows: in the bright filaments, the inclination to the vertical varies from

about 30◦ in the inner penumbra to about 60◦ at the outer edge; in the dark filaments,

the field is inclined at about 65◦ to the vertical in the inner penumbra, becoming nearly

horizontal at the outer edge of the spot. Indeed some of these field lines even reverse

direction and plunge back down beneath the surface.

The two families of field lines also differ in their larger-scale connectivity. It appears

that the more nearly horizontal fields (from the dark filaments) remain close to the

surface, whereas the more vertical component of the field (from the bright filaments)

extends high into the atmosphere, and can even extend many thousands of kilometres

across the Sun (Sams et al., 1992; Winebarger et al., 2001).

As far as the vertical structure goes, we know that the more horizontally-oriented
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Figure 1.8: Sketch showing the interlocking-comb structure of the magnetic

field of a sunspot penumbra (from Thomas and Weiss 2004). The brown

tubes represent the magnetic field lines, of which there are two families,

which coexist side by side: the field associated with the bright penumbral

filaments rises up into the solar atmosphere, and the field associated with the

dark penumbral filaments remains close to the solar surface or sometimes

dives down beneath it. The large vertical arrows represent the effect of

flux pumping (section 1.5.3) while the large curved arrow represents the

sunspot’s moat flow (section 1.6.3). Reprinted, with permission, from the

Annual Review of Astronomy and Astrophysics, Volume 42 c©2004 by Annual

Reviews, www.annualreviews.org.

24



field lines do not extend far above the surface. It is less clear how deep down below the

surface these fields extend. They could be confined to isolated tubes, enclosed above

and below by the more vertical field component, or they could be more like thin vertical

slabs that are bounded above but extend downwards for a significant distance.

The observations of penumbral fine structure raise a number of important questions.

First of all, how is the extraordinary interlocking-comb magnetic structure formed, and

how is it maintained after its formation? Secondly, what is the origin of the observed

fine structures – both the bright and dark filaments themselves, and also the smaller-

scale details within them? Finally, why is the penumbra so different in appearance to

the umbra?

It is likely that the observed penumbral features are ultimately of a convective origin,

and therefore we should be able to answer these questions through studies of magne-

toconvection. However, at present, the physical processes involved are far from well

understood. (We will discuss some of the current theories below – see in particular sec-

tions 1.5.2 and 1.6.2.) In fact, the main aim of this thesis is to try to better understand

some of these convective processes (and, in the process, to begin to answer some of

the above questions), by starting from simple models and working our way up to more

complicated (and more sunspot-like) situations. (See section 1.7 below for more details.)

A final noteworthy feature of penumbral structure is the so-called Evershed flow,

discovered by John Evershed in 1909. This is a radial, near-horizontal outflow across

the penumbra, and appears to be confined to the dark penumbral filaments, containing

the near-horizontal fields. (This is consistent with our expectation from magnetohy-

drodynamics that the flow and magnetic field would tend to be aligned.) The flow is

generally interpreted to be a ‘siphon flow’ along the ‘returning’ magnetic flux tubes,

which dive back down below the solar surface near the outer boundary of the sunspot.

What is happening here is that there is a different magnetic field strength at each end

of the tube. At the inner footpoint, the field strength may be around 0.1 T (a typical

penumbral value). The outer footpoints of these tubes typically correspond to magnetic

features in the photosphere, with field strengths typically around 0.15 T. Therefore,

there is a higher magnetic pressure, and hence lower gas pressure, at the outer edge of

the tube, and this gas pressure difference drives the outflow along the tube.
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1.5 Magnetoconvection

The models of overall sunspot structure show that energy is transported through the

spot predominantly by convection, and the form taken by this magnetoconvection will

influence the appearance and structure of the sunspot. Indeed, the differences in ap-

pearance between the umbra and the penumbra must ultimately be caused by changes

in the pattern of magnetoconvection as the magnetic field becomes progressively more

inclined to the vertical. In order to better understand these changes it is necessary to

develop a theoretical understanding of magnetoconvection.

The study of magnetoconvection is an old subject; the linear theory for incompress-

ible magnetoconvection was described by Chandrasekhar (1961), and a review of linear

and weakly nonlinear work is given by Proctor and Weiss (1982). With the availability

of modern computers, more recent work has turned to three-dimensional simulations of

compressible convection, which can be used to investigate the nonlinear behaviour in a

variety of regimes.

These simulations are of two kinds. The first kind attempts to include details of all

relevant physics (e.g. radiative transfer and partial ionization effects) and to produce

results which are directly comparable with observations. These simulations require

large computing resources, and so the number of different cases that can be investigated

is limited, but such simulations have been quite successful in modelling certain solar

convective processes. For example, the muram code (Vögler et al., 2005) has been

used recently to produce simulations of umbral dots which compare favourably with

observations (Schüssler and Vögler, 2006).

A second approach is to simplify the physics and study more idealized models. This

allows individual physical processes to be separated and studied in isolation. This

kind of simulation also tends to require less computing power, so that many runs can

be performed, and the different types of behaviour (occurring for different parameter

values) can be catalogued and studied. A disadvantage is that quantitative comparisons

with observations are not possible; one can only gain a qualitative understanding.

In general, one wants to run the more idealized type of simulation first, in order to

gain a broad understanding of the physical processes involved, and then to follow up

with more realistic simulations in order to make comparisons with observations. In the

case of sunspot umbrae, realistic simulations are starting to be carried out (as mentioned

above), but for the penumbra, we are still at the stage of trying to gain a qualitative
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understanding of the physics. Therefore, in this thesis we will focus on the more idealized

kind of simulations (leaving out radiative transfer and so forth).

We now summarize some of the calculations of magnetoconvection that have been

carried out (of the more idealized kind), and explain their relevance to sunspots.

1.5.1 Simulations with vertical magnetic fields

The simplest form of magnetoconvection calculation considers a computational box con-

taining compressible fluid with an imposed uniform vertical magnetic field. The upper

and lower surfaces of the box are taken to be impermeable stress-free boundaries, with

an imposed temperature difference between the two (in order to drive convection). In

the horizontal directions, periodic boundary conditions are usually used (for reasons of

computational convenience).

Examples of this type of calculation include Weiss et al. (1990); Matthews et al.

(1995); Weiss et al. (1996); Tao et al. (1998); Rucklidge et al. (2000); Weiss et al.

(2002). The results vary depending on the imposed magnetic field strength. For very

strong fields, the Lorentz forces are strong enough to completely inhibit convection, and

the fluid remains motionless. As the field strength is reduced, we come first into the

strong field regime, in which convection takes the form of small-scale, steady, hexagonal

convection cells. As the field strength is reduced further, the convection becomes weakly

time-dependent, taking the form of spatially modulated oscillations, where adjacent

plumes alternately wax and wane in amplitude. For weaker field strengths still, we

enter a flux separation regime, where the magnetic field is separated from the convection.

There are regions with large-scale, field-free convection, from which the magnetic flux has

been expelled, and there are regions with strong fields and weak, small-scale convection.

Finally there is a weak field regime where the magnetic flux is confined to intermittent

regions of intense fields, with the rest of the domain being essentially field-free.

Calculations with a vertical magnetic field are applicable to the umbra of a sunspot

(particularly in the central region). The umbra appears to be in the regime where the

time-dependent spatially modulated oscillations are found; the umbral dots are then

interpreted as regions where a particularly vigorous oscillation has protruded through

the radiative blanket. In addition, the dark nuclei observed in some umbrae may be

examples of flux separation (Weiss et al., 2002).
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1.5.2 Magnetoconvection in inclined magnetic fields

Less attention has been given to the case of an inclined magnetic field (which would

be appropriate for the penumbra, or the outer regions of the umbra). Tilting the field

has two main effects. Firstly, the problem is no longer rotationally symmetric about

a vertical axis, and this can lead to travelling wave phenomena. Secondly, the actual

pattern of convection changes when the field is tilted. In a vertical field, hexagons

are found near the onset of convection (as mentioned above); as the field becomes

progressively more inclined, the hexagons become elongated along the direction of tilt,

and eventually give way to field-aligned rolls. This latter solution is the preferred one

in a horizontal magnetic field (Danielson, 1961).

Matthews et al. (1992) have looked at the linear theory for compressible convection

in tilted fields, as well as some simple nonlinear models, and they were the first to

point out that a tilted field would lead to travelling wave solutions. Hurlburt et al.

(1996) have carried out two-dimensional simulations with inclined fields, showing the

nonlinear development of these travelling rolls. Hurlburt et al. (2000) report some three-

dimensional simulation results, which appear to show a transition between cellular and

more roll-like patterns as the tilt of the field is increased; however, they describe only

a limited number of results, in small computational boxes, so it is perhaps difficult to

interpret what is happening.

In addition, Julien et al. (2000, 2003) have performed an asymptotic calculation of

this problem in the limit of very strong magnetic fields. They find a transition to a

new form of convection for nearly-horizontal fields, which may explain the differences

between the bright and dark filaments in sunspots. However, their work makes certain

assumptions and approximations and it is difficult to know if the result will still hold in

a more general calculation.

We also point out a calculation by Busse and Clever (1990), which studies the linear

instabilities of finite-amplitude convection rolls within tilted magnetic fields. Although

the paper is more focused on the laboratory rather than the astrophysical case (for

example, low magnetic Reynolds numbers are assumed throughout), some of the results

may still be applicable to astrophysical situations.
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1.5.3 Flux pumping

A recent calculation (Weiss et al., 2004; Thomas et al., 2002b) has demonstrated another

phenomenon that can occur in compressible magnetoconvection: flux pumping. In this

calculation, a layer of compressible fluid, with no magnetic field, is simulated until a

steady convecting state is reached. A thin layer of magnetic field is then inserted into

the centre of the box. This layer does not stay where it is, but is moved about by the

turbulent convection; the calculation shows that the magnetic field lines are transported

preferentially downwards. This process, known as flux pumping, is essentially caused

by the strong asymmetry in compressible convection: there are weak broad upflows but

very strong downflows.

The pumping is able to hold down the field lines even against their natural tendency

to rise via magnetic buoyancy. The calculations show that flux pumping is a robust

process, and it provides a possible explanation for how the returning flux tubes, observed

in the penumbra (see above), can remain submerged below the solar surface.

1.5.4 Simulations in cylindrical geometry

An alternative approach is to run simulations in cylindrical geometry. For modelling

the small-scale features, the geometry is probably not all that important, but to look at

the larger-scale structure of pores and sunspots, the cylindrical geometry may need to

be included.

The problem is simplified if one assumes axisymmetry, as was done by Hurlburt and

Rucklidge (2000) and Botha et al. (2006) (for example), so that only a two-dimensional

computation is required. They used a cylinder containing an initially vertical magnetic

field. Their results show that this field is quickly swept into a concentrated flux tube at

the centre of the cylinder – a form of flux separation. Convection is suppressed inside

the flux tube, while convective cells form towards the edge of the domain. The authors

suggest that their solution is a good representation of a pore, but the solution cannot

really be applied to sunspots, since their penumbrae are highly non-axisymmetric.

An interesting feature of the simulations is that they tend to produce inflows along

the surface just outside the flux tube. These flows could represent the ‘collar’ flow

that would be needed to stabilize the sunspot against the magnetic fluting instability.

Because the flow observed at the surface outside of sunspots is always outwards (the

so-called moat flow), the authors suggest that in sunspots, these collar flows would be
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hidden from view underneath the inclined outer edge of the flux tube.

The next step would be to extend these calculations to non-axisymmetric cylindrical

geometry. Preliminary non-axisymmetric calculations have been presented by Hurlburt

et al. (2000), which show that the axisymmetric ‘pore’ results can be unstable to non-

axisymmetric perturbations. This may be related to the formation of sunspots from

pores (which is discussed below).

1.6 Formation and decay of sunspots

So far we have considered sunspots as essentially static structures. We now move on to

describe the processes leading to their formation and eventual disappearance.

1.6.1 Emergence of magnetic fields at the solar surface

Sunspots are magnetic features, and so before we can explain the processes that lead to

the formation of a sunspot, we must first of all explain how magnetic fields reach the

solar surface at all.

The study of how astrophysical bodies generate magnetic fields is known as dynamo

theory. In the case of the Sun, magnetic fields are believed to be generated near the

base of the convection zone, where a combination of differential rotation and turbulent

convection allows large toroidal flux tubes to be generated.

These flux tubes may subsequently be subjected to instabilities driven by magnetic

buoyancy, which will cause part of the tube to start rising up through the convective

zone. The tube then becomes shredded and frayed by the turbulent convection, before

arriving at the surface. This explains the observation of bipolar active regions, which

are areas where small patches of magnetic field, of both polarities, start to emerge at

the solar surface, as illustrated in Figure 1.9. A large active region will typically be

composed of several of these rising flux tubes.

The emergence of the magnetic field is accompanied by the appearance of small pores,

located at the points where the flux tubes (or flux tube fragments) intersect the solar

surface. These pores then start to move towards each other and coalesce, forming larger

and larger pores. This coalescence is driven by magnetic buoyancy: as the individual

flux tube fragments continue to rise, they draw closer together, like the strings of a

bunch of balloons held in one hand.
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(b)

(a)

Figure 1.9: Sketches of a rising flux tube (after Figure 4 of Zwaan 1992).

(a) A magnetic flux tube near the base of the convection zone. Part of the

tube has started to rise towards the surface. The small arrows indicate the

magnetic field direction, while the larger open arrow indicates the motion

of the flux tube. (b) The flux tube has reached the surface. On the way

up, it has fragmented into several parts. Pores or sunspots will be observed

at the points where the fragments intersect the solar surface (the horizontal

line). The dashed lines show the magnetic fields that would be seen above

the surface. Note how this model naturally produces bipolar active regions

containing adjacent groups of sunspots with opposite magnetic polarities.
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1.6.2 Formation of the penumbra

Once the radius of a pore exceeds a certain critical value (approximately 2000 km,

according to Rucklidge et al. 1995), a penumbra appears, and the pore develops into a

sunspot. The formation of the penumbra is a very rapid event. The penumbra forms

sector by sector, with each sector being completed in less than twenty minutes (Leka

and Skumanich, 1998), and the whole process is over in under half a day (Zwaan, 1992).

Although the theoretical processes underlying penumbral formation remain largely

unknown at present, the observed formation of penumbral sectors, within a short dy-

namical timescale of 20 minutes or so, does suggest that the transition from a pore to

a sunspot is triggered by an instability of some sort. Models of pore structure indicate

that the corresponding flux tubes must fan out with height, and as the magnetic flux

contained in the pore increases, the radius of the flux tube correspondingly increases,

as does the angle of tilt of the magnetic field at the edge of the pore. It is conjectured

(Rucklidge et al., 1995) that once this angle exceeds a critical value, an instability sets

in which leads to the formation of a penumbra.

One possible candidate is the fluting instability, which we have already discussed

earlier in this chapter. The calculation of Meyer et al. (1977) showed that pores and

sunspots would be stabilized (at least near the surface) by magnetic buoyancy effects.

However, their calculation did not take account of convection, which in reality occurs

both inside and outside the pore; therefore, the possibility remains that pores may be

susceptible to a modified form of the fluting instability, driven by convection. The

conjecture is that such an instability does indeed exist – but only if the field at the

outer edge of the pore is sufficiently inclined to the vertical. This condition would be

met only once the pore exceeded a certain size, and the resulting instability would drive

the transition from a pore to a sunspot.

There are one or two illustrative calculations that demonstrate the possibility of

such an instability. In Cartesian geometry, Tildesley (2003b) has found a convectively

driven filamentary instability of a highly idealized configuration representing a pore.

The nonlinear development of this instability was investigated by Tildesley and Weiss

(2004) (see also Tildesley 2003a); it is found that a pattern of bright and dark filaments

develops, although these are much wider than the filaments observed in real sunspots.

In addition, Hurlburt et al. (2000) have performed a calculation in cylindrical geometry

showing that an axisymmetric pore-like configuration is unstable to non-axisymmetric
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perturbations, again leading to filamentary structure (although again the filaments are

rather wide compared with observations).

These calculations suggest that pores could develop convectively driven instabilities

at their outer edges. The nonlinear development of this instability has not yet been

calculated within a realistic pore model, but it is conjectured (Weiss et al., 2004) that the

instability would lead to fluting at the outer boundary, with some families of field lines

being displaced upwards, and some downwards. (Hence the term ‘convectively driven

fluting instability’.) Clearly, more realistic simulations, starting from more realistic pore

configurations, are needed to test this hypothesis.

It is further conjectured that once this mildly fluted structure develops, the depressed

field lines are then ‘grabbed’ by the turbulent convection outside the spot, and pulled

down even further, via the flux pumping process described above. This would help the

initial filamentary structure to develop into a full-blown penumbra, with its interlocking-

comb magnetic field, and would explain how the ‘returning’ flux in the penumbra can

form. It would also provide an explanation of why there is hysteresis between pores and

sunspots, since once the field lines in the dark filaments are submerged, it would become

more difficult to return them to the surface again.

1.6.3 Decay of sunspots

Sunspots have finite lifetimes, varying from hours to months depending on the size of

the spot (the larger spots tend to live longer). The decay of a sunspot begins as soon

as, or even before, the sunspot is fully formed. There are two main processes by which

sunspots decay: gradual decay, and fragmentation.

The gradual decay is marked by a continual reduction in the size of the sunspot and

the associated magnetic flux. Observationally, we see that a well-developed sunspot is

always surrounded by a so-called moat flow, which is essentially a supergranular con-

vection cell centred on the sunspot’s position. This leads to a radial outflow around the

periphery of the sunspot. Within this outflow are embedded so-called moving magnetic

features, small flux elements that move radially outwards from the spot. These appear

to represent portions of the sunspot’s magnetic flux that are slowly chipped away by

the convection currents in the moat, leading to the gradual decay of the spot.

Sometimes sunspots can also decay by fragmentation, whereby the spot suddenly

splits into several smaller components, the components then disappearing shortly after-
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Figure 1.10: Butterfly diagrams showing (a) sunspot latitudes and (b)

total area of the Sun covered by sunspots as a function of time. Courtesy

NASA / David Hathaway.

wards. Often, the lines along which a sunspot splits are the same as the outlines of the

pores that came together to form the sunspot in the first place. These lines are also

often associated with light bridges.

1.6.4 The 11-year solar cycle

No description of sunspots would be complete without a mention of the 11-year solar

cycle. This refers to a cyclic variation both in the number of sunspots observed and in

the latitudes at which they appear. This is illustrated in Figure 1.10 which shows the

area of the solar surface covered by sunspots at various latitudes for the last century or

so. This is usually known as the ‘butterfly diagram’ (for obvious reasons). Note that

the cycle is not completely periodic; the amplitude is modulated from cycle to cycle.

There are also periods known as ‘grand minima’ where sunspot activity becomes weak

or non-existent; the most recent of these was the Maunder Minimum of c.1645–1715.

Because sunspots are a surface manifestation of magnetic fields that are actually

produced much deeper in the Sun, the sunspot cycle is an indication that the dynamo

processes that create these fields operate in a cyclic manner. The solar dynamo is not

yet fully understood, but it is widely believed that the Sun produces large amounts
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of toroidal magnetic flux near the base of the convective zone, where helioseismology

indicates that a strong shear layer exists. (A portion of this flux then rises to the

surface to create sunspots.) This toroidal magnetic flux is thought to migrate towards

the equator as a ‘dynamo wave’, resulting in the characteristic shape of the butterfly

diagram.

1.7 Outline of the thesis

So far, we have given a broad outline of the subject of sunspots, as well as trying to

point out some of the unanswered questions in the field. The area that remains most

puzzling is the penumbra, with its complex filamentary structure. We currently do not

understand the detailed nature of convection within the penumbra, nor do we know how

this convection gives rise to the pattern of bright and dark filaments observed at the

surface, together with the finer-scale structures found within these filaments. Related to

this is the question of why the convection within the penumbra takes on such a radically

different form from that within the umbra (as indicated by the difference in appearance

of the two regions and the sharp transition between them). In addition, we cannot yet

explain how the intricate penumbral structure comes about to begin with, nor how it is

maintained in the presence of magnetic buoyancy and other effects.

Clearly, in order to answer these questions, we will need to gain a better understand-

ing of magnetoconvection as it applies to sunspot-like magnetic field configurations. We

begin by looking at a simplified problem, that of a uniform magnetic field, inclined at a

fixed angle to the vertical. This should shed some light on the form taken by convection

in the different parts of a sunspot, where the angle of the field to the vertical varies from

nearly zero in the umbra, to 30–60◦ in the bright penumbral filaments, to 60–90◦ in the

dark penumbral filaments. In Chapter 2 we will investigate the linear stability theory

for a simplified model, which will clarify some of the symmetry effects and other aspects

of the problem. In Chapter 3 we develop these ideas into weakly nonlinear models, and

in the first part of Chapter 5, fully nonlinear numerical simulation results (using the full

compressible MHD equations) are presented.4

The second part of our work will be to look beyond uniform fields and to produce

models in which different parts of the sunspot (e.g. umbra and penumbra) are present

within the same model. We do this by setting up a simplified ‘sunspot-like’ magnetic

4A condensed version of Chapters 2 and 3 is given in Thompson (2005).
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field at the beginning of the calculation, and then investigating the forms of convection

that arise within that field structure.5 The ultimate aim would be to produce a model

showing umbral and penumbral convection, intricate filamentary structure, and all of

the other details that are observed on the Sun.

Sadly, we have not been able to achieve this aim. However, our models do at least

show a clear difference between the umbral and penumbral forms of convection, as well

as a noticeable sharp transition between these two patterns. Thus, they do begin to

answer some of the questions posed above; they should also provide a useful starting

point for any future research into these problems. (The main feature missing from our

results is the interlocking-comb magnetic structure in the penumbra; it seems that more

detailed modelling techniques will be needed before this can be reproduced.) The models

themselves will be described in Chapter 4 (where a simplified approach based on the

Swift-Hohenberg equation is followed) and the second half of Chapter 5 (where the full

compressible MHD equations are again used).

5This pre-supposes the existence of such a field structure. In other words, we are not attempting

to address the question of how a sunspot’s field structure is created; we are instead merely trying to

understand the convective patterns that arise once such a structure has been formed.
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